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We investigate the mechanisms of condensed ph Q@c upled electron transfer
(PCET) using Mapping-Variable Ring Polymér Molecular Dynamics (MV-RPMD),
a recently developed method that employs.an 1ser>ble of classical trajectories to
simulate nonadiabatic excited state dy ar(ws Hyre, we construct a series of system-

bath model Hamiltonians for PCET4 wherefour localized electron-proton states are

coupled to a thermal bath via a single“sglvent mode, and we employ MV-RPMD

to simulate state population dyr@eciﬁcaﬂy for each model, we identify the
c

dominant PCET mechanism }jy\ paring against rate theory calculations, we
cbly distinguish between concerted PCET, where the

verify that our simulations &R
electron and proton tra(s"fe%\&‘get er, and sequential PCET, where either the electron

or the proton transfers first.“I'his work represents a first application of MV-RPMD

to multi-level nsed\phase systems; we introduce a modified MV-RPMD expres-
sion that is derived using a symmetric rather than asymmetric Trotter discretization
scheme 54/ an inigialization protocol that uses a recently derived population esti-
mato toﬂ;%&n trajectories to a dividing surface. We also demonstrate that,
as £xpected, the PCET mechanisms predicted by our simulations are robust to an

@_l:l)l ry ghoice of the initial dividing surface.

)

U

X

=~

3)Electronic mail: ananth@cornell.edu


http://dx.doi.org/10.1063/1.4986517

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Publishihg INTRODUCTION

Understanding the mechanism of condensed phase proton-coupled electron transfer
(PCET) in biological processes like water oxidation by photosystem II'™ is an essential
step towards the development of biomimetic, photocatalytic matifials for water-splitting
and the efficient generation of hydrogen fuel.>® At present, ewies developed to
i

experimental observations, and more recently in the predi

characterize PCET in specific regimes®”® have proven remarkably powerful in explaining
%ﬁ{ in physical properties

and designing catalytic systems.® 1% In addition, several dizecf dymamic simulation methods

that can provide mechanistic information have been z{ioz Jancluding on-the-fly coupled

electron-nuclear dynamics,®'%!? mixed quantums€lassic l\iQC) dynamics,®*® and semi-

classical simulations.!?*® However, these me(b{%;m‘@oy dynamics that fail to preserve
0

-
detailed balance and the use of different le&&; cory to describe electronic and nuclear
motion (particularly by MQC methods) iNu uncontrolled errors in the simulation of

nonadiabatic processes. s\

Imaginary-time path integral’* basedfmethods like Ring Polymer Molecular Dynamics
(RPMD) overcome this challenge \gg ding a uniform dynamic framework for electronic

D employs an ensemble of classical trajectories that

conserve the quantum L?mzsm distribution,?? yields reaction rates that are independent
in

23-26

surface , and can accurately describe PCET in both

adiabatic and n?é étic }'egimes.w’28 Unfortunately, RPMD is limited to the simulation
of thermal one-électrgn

nonadiabat; Qmics in multi-level systems.?

ET processes and in general, cannot be used to characterize
9

d,393* however,

Severdl extensions of RPMD to multi-level systems have been propose
only the Mappiug Variable (MV)-RPMD?! method employs dynamics that conserve the ex-
agtiquangum/ Boltzmann distribution. MV-RPMD describes multi-state system dynamics

35-37

b app‘)ug discrete electronic states to continuous classical analog variables, and accu-
0

K&?l{ escribes dynamics in both the adiabatic and nonadiabatic regimes.3! Recently, two
us demonstrated its short-time accuracy in simulations of photo-induced excited state
dynamics in the gas phase.3* In this work, we obtain an improved MV-RPMD expression
derived from a symmetric rather than asymmetric Trotter discretization scheme,®® and we

use a recently introduced population estimator?® to constrain the ensemble of MV-RPMD
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Publishitrg ectories to an arbitrary dividing surface. We then construct a series of system-bath
models for PCET and use MV-RPMD to identify the dominant mechanism in each case.
Comparing these mechanistic predictions against rate theory calculations (Fermi’s Golden
Rule for nonadiabatic processes and Kramer’s rate theory for adiabatic electron transfer), we
show that our simulations correctly distinguish between concerted g@nd sequential PCET. In

addition, we also demonstrate that the mechanistic predictions 1 RPMD are robust

to an arbitrary choice of dividing surface.
This paper is organized as follows: In Section II we pr }m{no ified MV-RPMD ex-

i n'jl*@cedure used to construct

pression and in Section III we describe the quasi-diabatiz

system-bath models for PCET where four localized

ectronspr ton states are coupled to a

thermal bath of oscillators via a single solvent c(oi"‘dina «In Section IV, we introduce the

MV-RPMD correlation function used to track&ﬁeﬁt_{ n-proton state population dynam-
stral

ics and the initialization protocol used tg MV-RPMD trajectories to a dividing

surface. In Section V, we provide simu tlon and in Section VI we present the popu-
lation dynamics obtained from MV- mulatlons and we validate the resulting PCET
mechanisms against rate theory u

II. THEORY

A. MV-RPMD For %

The Hamﬂto n fo éleral K-level system is

K
H— (R)+ > () Vi (R) (], (1)

n,m=1
wher R\gﬁ uclear position and momentum operators respectively, Vo(R) is a state

in epe ent}uclear potential, V,,,(R) are elements of the diabatic potential energy matrix,

and |1/1n)3represents the n' electronic state. Implementing the Meyer-Miller-Stock-Thoss

‘pxsto 9536 we map the electronic states to singly excited oscillator (SEO) states,
"

[¥n) (| = alam = In)(ml, (2)

where al and a,, are boson creation and annihilation operators respectively that obey the

commutation rules [af, a,,] = dm. In Eq. 2, we use the notation |n) = [0,05...1,...0x),

3
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Publishitigiepresent SEO states that correspond to a product of K" — 1 uncoupled oscillators in the
ground state and one oscillator in the first excited state.

Following the original MV-RPMD derivation,®* path integral discretization of the canon-

ical partition function, 7 = Tr [e*Bﬁ } where § = 1/kT, is performed using continuous

Cartesian variables for the electronic and nuclear degrees of fre?{om by inserting N — 1

copies of the identity,3” )

[ / dx / dR |x, R) (x, R|P (3)
where P = ) |n)(n| is the projection operator in the E@)bx Evaluating the matrix
elements of the Boltzmann operator using the symmétric tter approximation (detailed

derivation provided in Appendix A) and employlng ngber transform in the electronic
variables,>! we obtain an exact path integral ex essm for the quantum Boltzmann distri-

bution in electronic and nuclear phase space va bles,_

Z o lim /d{R \/d{xa}/d{pa}

X e /3N N({Ra Pa} xa} {pa} Sgn(@)7 (4)

where Sy = /N, [d{R.} =
of integration. In Eq. 4, the

.. [ dRy and similarly for the other variables

ID*Hamiltonian is

N
1 1 1
H —xgxa—i——ga)——ln@, 5
v L ;(6N PP ) — 5 lule )
where N is the ?ﬁ’u of r}/lg polymer beads, and the nuclear ring polymer Hamiltonian,

P P
RP— ——— + V(Ra)

K i MwN(R ~Ro)” -(Ra—Ra+1)], (6)

is t physical mass of the nuclei, and wy = N/f. The electron-nuclear interaction
téxm in Sq. 5 is

wh 6 = Re(Tx[I), (7)

wilere
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Publishi:mrg' Xq, Pa are continuous position and momentum vectors of length K representing the K
electronic states of the a'" ring polymer bead. Finally, the interaction matrix in Eq. 8 is

given by

e F VR VontRs)] 1 O() A N n=m
Mon(Ro Rai) = 8 52 =2 Vg (Ra) + Vo (R o= 3 0Ty )

4

+ X jm =5 Vim(Ra) + ij(RaNKN /Bl O(B) £ m
(10)

a result that is well known in the context of state space hxlﬂegrals.40 The interaction
matrix in Eq. 10 is symmetric (in keeping with the original yuantum Hamiltonian) making
the MV-RPMD Hamiltonian symmetric, and in@vin e numerical stability of the ap-
proximate dynamics. We also emphasize that syéetric and asymmetric formulations

are equivalent for equilibrium simulations@b t similar bead-convergence properties.

~

III. PCET MODEL SYSTE
\ S
Previous work using RPM forN ulation of PCET in condensed phase model sys-

rh%ution to describe a single distinguishable electron and

tems used a position-space rep

xact quantum dynamics studies! and surface hopping

?cceptor states coupled to a position space proton. Here, we

proton coupled to a the th.2"

based simulations'? r%mdel systems choose to employ a two-state representation
of the electron d {@}

transform these{on Ha

electron-pr 1&1’588 are coupled to a thermal bath via a solvent polarization coordinate.

iltonians to a representation where four localized, quasi-diabatic
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Publishiwficre s, P, and mg are the position, momentum, and mass of the solvent polarization
coordinate, Vyy, x/y/(s) are the elements of the diabatic potential energy matrix where the
subscripts X/Y/X'/Y' = {D, A} label the donor and acceptor states of the particles. In
Eq. 11, P;, Q; and M are the momentum, position and mass of the j bath mode, and ¢; is
the coupling between the solvent and the ;' bath mode of frequei/ wj. The bath spectral
density is Ohmic, \

J(w) = nue /e, 5 (12)
with cut-off frequency w., = ws and the dimensionless af%]/ msws determines the
coupling strength between the solvent and the bath modes.* e continuous spectral density

is discretized into f oscillators with frequencies®? 5

Cj‘wwj (14)
where j =1,..., f. \\

The diagonal elements of t \oteptial energy matrix in Eq. 11 obtained through our
quasi-diabatization prot ce]-.zﬁ fitted to quadratic polynomials of the form,

/ VXYX)/(S) = a82 + bs +c (15)

V.

and the off-di onwh gs are taken to be constants that are independent of the solvent

coordinate.

/
IV. (STAT OPULATION DYNAMICS

-

In gesera , thermal real-time correlation functions in the MV-RPMD framework are writ-
NS
o (sen(©)A({€a o) B({€a}t))w
Cap(t) = , 16
nll) (n(©))w 1o

where {€,}; represents the set of bead positions and momenta {R., Pa, Xa, Pa} at time ¢, and
the bead-averaged function A({€.}o) = 1/N >, A(£.(0)) and B({£,}:) is similarly defined.

The initial positions and momenta are generated from a standard Path Integral Monte

6
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Publishiigrlo (PIMC) simulation that employs the sampling function, W. For a system initially at
equilibrium, W = e-AvHn{&a}o) with the MV-RPMD Hamiltonian, Hy, defined in Eq. 5,
however, this function can also be defined to describe an initial non-equilibrium distribution

as discussed below. Real-time trajectories are generated by integrating equations of motion

corresponding to the MV-RPMD Hamiltonian, /

. O0Hy .  OHy \
R“_apa’P“__aR 3
O oy \

For the PCET model systems considered here, the % tlon vector, Ry = (Sa, Qa),
includes both the 1D solvent coordinate coupled o.thedocallelectron-proton states and the

positions of all the bath modes.

Here, we investigate the mechanism of thex\’s ]!JT by initializing trajectories to a non-
o)

equilibrium distribution, ppeq(0), corresp&ﬂ'{
We then track the electron-proton state ﬁp'ﬂtion dynamics by evaluating the real-time

a particular choice of dividing surface.

quantum correlation function, \ .

m r [pneq(O)Pn(t)h] ) (18>

where the heaviside fun is deﬁned in terms of the solvent coordinate and allows us
to separately ensemblé a U:ggver trajectories moving forward (from the dividing surface

towards reactant ac ards (towards products),

sy — st) forward (19)
h(s:c — s¢) backward.

In th MV— Mfls framework, the heaviside function in Eq. 18, is written in terms of the

solven ing bolymer centroid, h = h(4(5; — s!)), where 5 = 1/N 3N s,. The n' state

p ulatlsns at time t are evaluated using the ‘Boltzmann’ estimator,3!:34

\ o PP = 1}; 7[111:] (20)

where T',,,, is a diagonal element of the matrix previously defined in Eq. 8 and the time-
evolved positions and momenta are obtained by integrating the MV-RPMD equations of
motion in Eq. 17.
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Publishing' ‘o initialize trajectories to the dividing surface, we define an initial non-equilibrium

density operator, pneq = P35 ® poa™ where the full system is divided into a relevant

subsystem described with non-equilibrium initial conditions and the bath that is initially at

equilibrium. The subsystem density matrix is defined by

v = e a5 — st H(5 (P, — P}, / (21)

pneq
n=1

of the n'® state, and the solvent position, s, and elect ate populations, P,

where Hy is the subystem Hamiltonian given by the first hnei& 1, P, is the population

together define the dividing surface. Ignoring the Boltz nghts associated with each

electronic state, we can write the corresponding con traintsin the MV-RPMD framework

as,
R (0) = &g s QJSC 2
where the nuclear ring polymer Hamﬂto de ed in Eq. 6 and §j is the nuclear RP

centroid constrained to its dividing surfa\ ¢value, s*. Further, in Eq. 22, we use the recently

derived ‘semiclassical’ estimator,3”

PR = = 5N ([:ca]i + [pal; — 1), (23)

n n
where [’PSC}Q is the state pot%&k associated with the a'" bead. We note that this pop-
ulation estimator was figorously derived in the context of MV-RPMD to yield the exact

equilibrium populations at time t = 0,3 and is of similar form to the original semiclassical

1.35

population func P{e present bead-averaged form in Eq. 23 has also been used as

an estimator e 1adiabatic-RPMD method where trajectories are initialized to an

rium path-integral distribution and time-evolved under the semiclassical map-

1&1&9/l Finally, it is important to recognize that constraining electronic state

SC

populations yia in the correlation function in Eq. 22, does not constrain P? to the same

vélues at“6= 0 since the latter includes the correct Boltzmann weights for each electronic

state at ) given nuclear configuration.

NI

V.\ SIMULATION DETAILS

We construct three model systems that correspond to different PCET regimes and report

values of shared parameters for each case in Table. I. Parameters for the quasi-diabatic
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PUbliShi]](gt ntial energy matrix elements are tabulated in Appendix C.

Parameter®|Model I|Model II|Model III

M 22000 | 22000 | 22000
ws X 104 | 3.72 4.00 3.72

]\]; 12 12 :S <<\

ms ms

nfmawos |1 1 1\\\

T/K 300 | 300

TABLE 1. Solvent and bath parameters common to all t@ PCET systems.

@ All parameters specified in atomic units

For each model, we calculate the read—t'gmk lﬁﬁon function in Eq. 18 by sampling
br

the initial nuclear and electronic non-equili

Carlo (PIMC). The initial electronic sts%pb?ulation variables should be sampled subject
n

to the bead-average constraint descr

istribution using Path Integral Monte

. 22. However, following previous work,** we
implement this constraint by set‘% 1dual bead state populations to the desired values
at the dividing surface rathe%ls raining the average,
[PC]. =P;. (24)
The dividing surfdce for‘}hree models is chosen to be the intersection of the reactant
(DD) and produ (A ( quési-diabatic state potentials such that st = 0 a.u. and only the
DD and AA s s aregopulated with Ph, = Pi, = 0.5and Pj, = Pip = 0. For each
model, we a&tﬁa distribution with a total of 5 x 10® MC points and bead convergence
is achievéd with 10 beads.
thre odels MV-RPMD trajectories initialized to the dividing surface are prop-
a 4™ order Adams-Bashforth-Moulton predictor corrector integrator with a
time steg of size 1072 fs. Trajectories were integrated for a total simulation time of 500 fs
mo els T and III, and 3000 fs for model II. The number of trajectories used to obtain
converged results shown below were 2.5 x 104, 8 x 10%, and 1.5 x 10° for models I, II,
and III respectively.

We separate the ensemble of trajectories into a group that moves ‘forward’ towards prod-

uct formation (increasing values of the solvent coordinate) and a group that moves ‘back-

9
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Publishiwgl d” towards the reactant state (decreasing values of the solvent coordinate) to obtain the
correlation function Cp, 5(t) defined in Eq. 18. Splicing the forward and backward averages
together at time zero, we obtain the population plots shown here.

Finally, we use model III to demonstrate that the mechanism predicted by MV-RPMD
is independent of the choice of initial dividing surface We choose a different dividing surface

with st = —0.8 a.u. (at the intersection of the DD and AD stat nd e initial electronic

state populations are taken to be Ph, = Pip = 0.5 an D — Pi, = 0. For this
simulation, trajectories were integrated for a total time an

were employed to obtain the converged results shown her y

2.5 x 10* trajectories

3

VI. RESULTS AND DISCUSSION

The diabatic potential energy surfaces asta fun oﬁ‘éf the solvent coordinate for model I
are shown in Fig. 1, and the corresponding paxuéﬁan dynamics are shown in Fig. 2. Reading
the plot chronologically from left to right, Mhe initially populated reactant state (DD)
where both electron and proton are 1\t%~d\onor state transfers population to the product

state (AA) where both the electr 1\Qn\ roton are in the acceptor state. This indicates
.}

\‘

-0.01 1
-0.02 : ‘ ‘ : :
-6 -4 -2 0 2 4 6
s(a.u)
-ﬁ

FIG. T a81—d1abatlc state potentials as a function of solvent coordinate are shown for

1, wi state DD in red, DA in green, AD in blue, and AA in pink.

S

}?I&er ed PCET mechanism where the proton and electron transfer simultaneously on a
sub-picosecond time scale. The energetically unfavorable AD and DA states are not involved
in the PCET process, but we find a small population in both states that decays to zero at
long times.

We plot the diabatic potential energy surfaces for model II in Fig. 3 and the corresponding

10
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0 S /
;| = 0 5 1
time (10%) fs 5

FIG. 2. Population dynamics for model I (concerted), where popiationgransfers directly from the

reactant DD state (in red) to product AA state in pink. T

i@rme iate AD (in blue) and DA
. R

(in green) states are not populated during the course of gheweaction.

MV-RPMD population dynamics plotted in Fig.c—Ag 1 réading the plot chronologically,
we find that both the reactant (DD) state apd m (proton transfer only) state are
populated although the monotonic trend 1%ha’c at sufficiently long times t — —oo

the DD state will be fully populated a{dm\ ate will have zero population.
0.02 S ‘

. \ B

0.015 |

y. -6 -4 -2 0 2 4 6

/ / s(a.u)
FIG. 3. The @'&tic state potentials as a function of solvent coordinate for model II with

state DD ingre A in green, AD in blue, and AA in pink.
¢ 4
In Fig. 4, See additional population transfer from the DD to DA state on a timescale

ofemz, fsspreceding the rise in the product (AA) state population. We also note a

'1igibl§ population transfer from the DA to AD state at short times that decays into
‘c'hsmix population in the AD state at longer times. These results thus suggest a sequential
chanism for PCET where the proton transfers first, facilitating electron transfer.
The diabatic potential energy surfaces for model III is shown in Fig. 5 and the corre-
sponding population dynamics in Fig. 6. We find that the system is initially in the reactant
DD state with significant thermal population the DA state. Following the dynamics we find,

11
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32 I 0. 1 2 & /
time (10°) fs 5

FIG. 4. Population dynamics for model II (sequential proton tréamsferdollowed by electron trans-
fer), where population first transfers from the reactant D sz)e (inged) to the DA state (in
green) corresponding to proton transfer before the electr a ;;Te?ading to a rapid rise in the

population of the product AA state in pink. There is a small th%mal population in the AD state

in blue. (
0.08 w & '

>

AN
NN

- -5 0 5 10
s(a.u)

FIG. 5. The quasi-dia tmie potentials as a function of solvent coordinate are shown for

model III, with statedD )n re A in green, AD in blue, and AA in pink.

however, that

%Nde IT population transfers from the reactant state to the AD state
corresponding«o €lectron transfer preceding the rise in population of the product AA state.
This indieates’ a sequential PCET mechanism where the electron transfers first facilitating

protofi trans

Despite ilhtializing MV-RPMD trajectories to the same initial dividing surface for all
thyee mo’iels, we find population dynamics point to three different PCET mechanisms. We
w Iy that MV-RPMD simulations can yield mechanistic insights independent of the

itial choice of dividing surface for the reactive trajectories by using a different dividing
surface in model III. In Fig. 7 we plot the results of this simulation where the initial dividing
surface is chosen to be at the intersection of the reactant DD state and the electron-transfer

only AD state. We find the predicted mechanism is unchanged —population transfer from

12
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0 /
) ) 0 7 T
time (10%) fs 5

FIG. 6. Population dynamics for model IIT (sequential ET_PT)N% opulation first transfers
from the reactant DD state (in red) to the AD state (in bl )‘(@resp ding to electron transfer
before the proton transfers leading to a rapid rise in th¢ popu '-(.)::Bf the product AA state in
pink. The DA state (in green) shows some initial the Iilal opulbtion but is not populated during

the course of the reaction.
the reactant state to the AD state first, before RCET product formation.

RN,

B S 0 2 1

1 time (10%) fs
FIG. 7. Population yn%ml for model III (sequential ET-PT), with reactant state in red, PT

state in green, ET% blu nd/ﬁroduct state in pink where trajectories are initialized to the electron

transfer transi Oﬁh\

£
.\&»/
A. eriﬁcﬁt n with Rate Theories

We Véify the accuracy of the PCET mechanism predicted by the MV-RPMD simulation

wzca&:u ating Fermi’s Golden Rule (FGR) rates for concerted PCET), electron-transfer, and
p

ton-transfer for each model.** For Models I and III, the electron transfer is near-adiabatic

and we use Kramer’s rate theory* to calculate rates for these processes.
We estimate the FGR rate using a simple analytical form derived for systems in which the

reactant and product diabatic potential energy surfaces are displaced harmonic oscillators

13
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Publishing Reaction Path Model T~ Model I Model TIT

kEDD_AA 1.85 x 107 1.61 x 10° 4.70 x 106
kpp—pa  9.81 x 10717 2.53 x 10% 5.97 x 10*

kDD_AD 2.69 x 105" 1.01 x 106 1.03 x 10}1*

TABLE II. FGR and Kramer’s theory rates (indicated with a *) for CQM%PCET (kDD—AA)s
ant D

electron transfer (kpp—ap), and proton transfer (kpp—,pa) from th Q state for all three

models are reported in s~!. The fastest rate for each model is.highlighted.in bold to indicate the

preferred mechanism. ‘)"'"‘-.
-

with frequency w and coupling A 4647 - &3

A ;—Zw?evzs Ot}g'lv @csch (2)), (25)
where w = +/2a/m, is the frequency Oﬁ@ ct diabatic state, v = (Vg — Vp)/w,
z = fw/2, S = mwV}?/2h, I, is a Wessel function of the first kind, Vj is the
horizontal displacement of the diaba ?‘R}?'CEI: ial energy functions, and Vg,p are the values
of the potential energy at the reé;&roduet minimum such that Vz — Vp measures the
driving force. For adiabatic w

2
1+(l> - L) L, (26)

KTX_) 2wy wp | 2m
£
uen a{ the top of the barrier, GH is the solvent FE barrier when the

ramers theory,*

cl

where wy, is the ?/ q
solvent is tre edglkwlly, and v = 1/Ms.*® The resulting rates are reported in Table II,

and as expéctediwe find that the fastest rate for model I corresponds to a concerted PCET

reaction, 410(}91 I the proton transfer reaction is the most rapid and for model III the
ﬂ

electron trangfer reaction rate is the fastest.

-
Vg\éONCLUSIONS
NI

We have extended the applicability of MV-RPMD to the simulation of condensed phase
PCET using an improved formalism and a new population estimator to follow state to
state population transfer dynamics. We employed a simple quasi-diabatization procedure

to build three model PCET systems where four local electron-proton states are coupled

14
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Publishi'rrgw thermal bath via a single solvent polarization coordinate. Following the population
dynamics by initializing MV-RPMD trajectories to an arbitrary dividing surface we identify
the mechanism of PCET for each of the three models and verify the accuracy of the predicted
mechanism against FGR and Kramer’s rate theory predictions. By performing a simulation
with a different dividing surface, we were also able to clearly estali)/sh that our MV-RPMD

simulations yield mechanisms that are independent of the initi sSoic f dividing surface

to which trajectories are constrained.
The direct dynamic simulation techniques presente hex\be readily extended to

future studies of complex photochemical reactions apdapa "ﬁy photo-initiated PCET
processes in the condensed phase. Future work in thi direcﬁon will include deriving a sys-
tematic correction to the approximate MV-RPM Eyn mics. In addition, we recognize that
accurately parameterizing a system-bath Hami iami)? the form described in Appendix B

from an atomistic simulation remains a sigiK nt challenge.
\\
~
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pendix A: Symmetric Trotter Derivation

In the limit that N — oo, the high-temperature symmetric Trotter approximation is used

to separate the state independent nuclear potential operator, V;, and the diabatic potential

15
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Publishiegrgy matrix, V', from the nuclear kinetic operator T,

(1, Rale™ | Ry, m) (A1)
~ (n Rale—ﬂTNV()e—ﬁTN\/e—ﬂNT Exy _BAV0|R&+17 m)

_ e_BTN(VO(R“)+VO(Ra+1)) <Ra‘€_ﬂNT|Ra+1>

“BNYV(RY), ~ENV(Ray1)
x(nle” 2 e 2 |m) ‘)

The nuclear kinetic matrix element can be evaluated exa L)sco tail

~—
Rele ™| Royq) o

P(R,|P) P|e<m? (A2)
?Roﬁ-l

A &P\mm
UM
B

— ( % (Ra*Ra+1)2.
27BN \

Substituting Eq. A2 back in the Bol \cpnk trix element, we have

(n, Ry |e \,
_7 Vo (Ra+Vo(Rat1)+

N[V (Ra)+V (Raty1)] Im). (A3)

\\

—Ra+1)2>

Q

In order to e h%e lectronlc matrix element, we begin by defining a diagonal matrix

with elemen Ry, Rov1) = 5(Vp(Ra) + Vb(Ras1)), and off-diagonal matrix elements
Vob (R, Q& VOD )+ VOD(RQH)). Employing a high-temperature Trotter ap-
indation

rther split the off-diagonal terms symmetrically around the diagonal terms

(n]e By (Vb+Vopb) \m) (A4)

-8
~ (n BV e e 2™ Vo m
< |e 2 op ,—BNVD W | >

= 3 (nle 2 Vo0 ) (e ANV R (ke 2 VoR )

= > (nle™For|j)em Vi (e o0 m)
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Publishiife off-diagonal matrix elements are easily evaluated,

Q

(nle 00 ) & {nl(1 ~ Vo) ) + O(83)

1 n=yj
= (A5)

B Vobl,; n#j
where [V]  is used to indicate off-diagonal elements of the diab p tlal energy matrix.
Substituting Eq. A5 into Eq. A4, we obtain an expression for,t ctromc matrix elements

by considering two cases:

3

Ifn=y
? -
<n|e_5N(VD+VOD)’n> \ (A6)
— <n€§fvvonn>e@ N -
Ifn#j

\I<
n|e Ant \ (A7)

Aov e~V (115 Vo )

J

p ( ﬁN ij Vi =04+ 0(83)
Case 2 (n # m/ )

Ifn=y i
D (nfe ™3 Vor eV e or m)
m#j
b =3 e (A8)
m#j
7&‘] and if m = j

D (e ™30 j)e o e 5 Vor )

n#j

= Z ——Vn]e_ﬁNij (Ag)
n#j
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Publishilfg: # j and if m # j

3 (nle #Vor e BNV (jle 2 Vor ) (A10)
n#EMFAS
_ B ’ VoV e BNVii — 2

n#EMFE]

Appendix B: Quasi-Diabatization Protocol \Q
To construct a Hamiltonian in the basis of local elec%};@m states, we start with a
T w

previously-used system-bath model Hamiltonian for PCE e the proton is represented

in position space and a two-state system describessthe elegtron transfer.!34149°51 The system
Hamiltonian is L ‘)

P P

= o “& (B.s) + Viy(R.5). (B1)

In Eq. B1, R is the proton coordinate \Vt&bo\'uga’ce momentum Pg, and V,(R) is a double

well potential in the proton coordin t%

m 2 m2wh
Vo(R) = AR? 4 —HCERY AR, (B2)

- 16V;
where mp is the mass of thek&s‘ wg is the frequency, A is a measure of anharmonicity,

and Vj determines the igkhs the barrier for proton transfer. Further, the proton-solvent
coupling is &

£
£ V(Rs) = —mstanh(9R), (B3)
n€l o are constants that can be chosen to favor either concerted or sequential
. -state diabatic potential for electron transfer is

1
Vii(R, 8) = §msw2(s — 8;)* + @iz tanh (G R), (B4)

s

where /1,23 a;, and ¢ are constants that can be tuned to construct models that favor either
770902 ed or sequential mechanisms. Parameters for the three models considered here are
provided in Table III

For each value of the solvent configuration in the range —6a¢ < s < 6ag, we diagonalize
the system hamiltonian on a uniform DVR grid in the proton coordinate with a grid range of

—2ag < R < 2ap and 100 grid points. The adiabatic eigenstates obtained upon diagonalizing

18
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Parameter®

Model I

Model II

Model IIT

mp 1836.1 | 1836.1 | 1836.1
WR 0.0104 | 0.0104 | 0.0104
Vo 0.012 | 0.014 0.012
51 -2.13 -2.16 -2.13
S 2.13 2.16

Via 0.00245| 0.0124
1 0.0011 | 0.017

1o x 103 | 5.84 0.71Q
A 00 | 0012

TABLE III. Parameters for the model Hamiltoni s\'n—E .
L

@ All parameters specified in atomic units %

the system Hamiltonain are writtten \ ¢;) where ¢; is the it adiabatic state with

eigenenergy F;.
Further, by diagonalizing the teﬁlﬁiltonian for a single electronic state (donor or

acceptor) at each value of s, Qu.%bﬁt localized proton wavefunctions, (R; s|l;) where [;
| electron

z/\,/,\

is the j* quasi-diabatic local e -proton states that can be expressed in terms of the

( -‘.\: Z/dR/<R;S|€i><€i|R/;S><R/;5|lj> (BS)
Matrix elements ‘of the
using Q\\

(GIH|L)

£
_\&/
) N Z%‘|€i><€i|H|€i’><€i’|l;>

5 = Z<lj|€i>Ei<€i|l;‘>a (B6)

WPQE,' is the energy of the i*® eigenstate of the Hamiltonian in Eq. B1.

adiabatic eigenstates a

amiltonian in the quasi-diabatic basis can then be constructed

-

he overlap between the reference quasi-diabatic wavefunction and the adiabatic state

for a given value of the solvent coordinate, s, is then obtained by evaluating

(elly) = / dR(e|R)(R|L). (B7)
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Publishiﬁg)pendix C: Parameters for Quasi-Diabatic Potential Surfaces

We provide the diabatic potential energy matrix parameters for all three models below.

Diabat «a b c /\

Von  0.0015 0.0075 -0.0041
Vba 0.0015 0.0055 0.007
Vap 00015 -0.0055 0.00%2 /e
Vaa  0.0015 -0.0075 @5‘(‘)41

TABLE 1V. Diabatic potential energyﬁﬁ‘% meters for model I

& ! -
Coupﬁh&&)

N
VoDma 9 107

;bss x 1073
&g, A 18x107*
%DA,AD 1.8 x 1074

Vba,aa 2.5 % 1073

‘\ Vapaa 9.7 x 107°
/]é{\//Diabatic coupling matrix elements for model 1

o ¢ / Diabat « b c
) Vop  0.0015 0.0072 -0.0018
o Vba 0.0018 0.0058 -0.0013
) Vap  0.0018 -0.0061 0.0034
\

Vaa 0.0016 -0.0083 -0.0018

TABLE VI. Diabatic potential energy surface parameters for model II
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Publishing Coupling A
VDD,DA 1.1x 1073

Vbpap 1.2 x 1074

Vbpaa 1.2x1074
Vbaap 1.2x 1074 /
Vbaaa 1.2 x 1074 ‘)\
Vapaa 1.4x1073

TABLE VII. Diabatic coupling matrix el eﬁ?fo\odel 11

"\‘
—
Diabat a (
Vop  0.0015 ow
Vpa 0.0015
Vap 0.0 w; 0 0095
0015 0.0009
TABLE VIII. Diabatic po n‘a’,%len v surface parameters for model III.
~
“
‘ﬁng A
\\]ADD,DA 6.9 x 1074
Q VDD,AD 2.5 x 1073
Vbp,aa 1.8 X 1074
Q

/ V. Voaap 1.8 x 1074
\ Vbaaa 2.5x1073
Vapaa 6.9 x 1074

& }’ABLE IX. Diabatic coupling matrix elements for model III
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