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Abstract

The energies of molecular excited states arise as solutions to the electronic Schrödinger equation and are often

compared to experiment. At the same time, nuclear quantum motion is known to be important and to induce

a red-shift of excited state energies. However, it is thus far unclear whether incorporating nuclear quantum

motion in molecular excited state calculations leads to a systematic improvement of their predictive accuracy,

making further investigation necessary. Here we present such an investigation by employing two first-principles

methods for capturing the effect of quantum fluctuations on excited state energies, which we apply to the Thiel

set of organic molecules. We show that accounting for zero-point motion leads to much improved agreement

with experiment, compared to ‘static’ calculations which only account for electronic effects, and the magnitude

of the red-shift can become as large as 1.36 eV. Moreover, we show that the effect of nuclear quantum motion on

excited state energies largely depends on the molecular size, with smaller molecules exhibiting larger red-shifts.

Our methodology also makes it possible to analyze the contribution of individual vibrational normal modes to

the red-shift of excited state energies, and in several molecules we identify a limited number of modes dominating

this effect. Overall, our study provides a foundation for systematically quantifying the shift of excited state

energies due to nuclear quantum motion, and for understanding this effect at a microscopic level.
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1 Introduction

The optoelectronic properties of organic molecules are dominated by their low-lying excited states known as

excitons [1]. Exciton energies are critical to several technologically-relevant processes in these systems, such as

singlet fission and thermally activated delayed fluorescence, which find applications in photovoltaics and LEDs

respectively [2, 3, 4, 5]. It is therefore desirable to develop methods for the accurate prediction of exciton

energies.

Typical methods for the calculation of excited state energies, such as time-dependent density functional

theory (TD-DFT) [6], coupled cluster (CC) [7], complete active space self-consistent eld (CAS-SCF) [8], and the

Bethe-Salpeter equation (BSE) [9, 10, 11], only account for electronic contributions to exciton states, typically

computing vertical excitation energies at a fixed geometry of the system. However, in a recent study, Bai et al.

[12] showed that the vibrational motion of molecules is responsible for a red-shift of the absorption maximum

compared to ‘static’ vertical excitation energies, an effect which needs to be accounted for in order to achieve

predictive accuracy. Even at 0 K, atomic nuclei vibrate with a zero-point energy of 1
2 h̄ω per normal mode. In a

recent study on solid state organic semiconductors [13], two of us showed that this nuclear quantum motion can

significantly change the ‘static’ exciton energies that are commonly computed at the ground state geometry of

a system, and that incorporating these effects leads to improved agreement with experiment.

A number of computational studies have proposed advanced methods for accurately simulating the shape of

molecular absorption spectra including vibrational effects [14, 15, 16]. Additionally, the effect of nuclear quantum

fluctuations on molecular excited states is now understood to cause a red-shift of exciton energies compared to

their ‘static’ values [12]. Despite these advances, there remain a number of open questions regarding the effect

of quantum fluctuations on molecular excited states. In particular: (i) It remains unclear to what extent the

inclusion of quantum fluctuations leads to a systematic improvement of molecular excited state calculations, in

terms of agreement with experiment for the exciton energy, which corresponds to the frequency of the absorption

maximum in the case of a state with non-zero oscillator strength. (ii) How many vibrational normal modes

significantly contribute to the renormalization of exciton energies due to quantum motion is, to the best of our

knowledge, not yet understood, since the studies which have emerged so far do not provide a mode-resolved

picture of this effect. (iii) Our previous work in periodic structures [13] suggests that the change in the exciton

energy due to zero-point motion depends on the size of the studied system. It is hence important to investigate

whether such a trend also holds for isolated organic molecules. (iv) It is thus far not clear whether the level of

theory employed for the calculation of the zero-point renormalization of the exciton energy has a large impact

on its value, or whether the magnitude of this effect is largely independent of the underlying level of calculations.

This last point is particularly important for practical calculations, as such an independence would imply that

one could compute the correction due to nuclear quantum effects at a cheaper level of theory than the ‘static’

exciton energy, hence reducing the overall computational cost of the calculation.

In this work we systematically investigate the effect of nuclear quantum motion on exciton energies of

organic molecules and address the aforementioned questions. In order to accurately compute the zero-point
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renormalization of exciton energies, we employ a Monte Carlo sampling technique, combining TD-DFT and

finite difference methods for the molecular vibrations [17, 18]. This Monte Carlo method had thus far been used

in the context of periodic systems [13] and allows us to capture exciton-vibration interactions to all orders and

to treat excited state energy surfaces without any harmonic assumption. It also has strong similarities to the

nuclear ensemble approach [19], which has been developed for molecular systems and is also used in Ref. [12].

While both the nuclear ensemble and Monte Carlo methods capture the renormalization of exciton energies

due to quantum fluctuations, they do not provide information on the individual contribution of normal modes

to this effect. For example, low- and high-frequency vibrations in organic systems are known to play different

roles during vibrational relaxation [20] and electron-transfer reactions [21], therefore obtaining a mode-resolved

picture for the exciton energy renormalization is critical to obtaining microscopic insights into the physics of

these systems. Such mode-resolved information is available through the use of a quadratic approximation to

the exciton-vibration coupling [18], however this comes at the cost of only capturing these interactions to third

order. Here we employ the quadratic approximation for capturing the correction to exciton energies induced by

nuclear quantum motion, and we assess the accuracy of this method by comparing to the more accurate Monte

Carlo calculations.

We apply our set of methods to the so-called Thiel set of organic molecules (sometimes also referred to as

the Mülheim set), for which highly accurate exciton energies have been computed using wavefunction-based

methods [22]. The Thiel set of molecules consists of four broad categories of structures: unsaturated aliphatic

hydrocarbons, aromatic hydrocarbons and heterocycles, carbonyl compounds, and nucleobases. The studied

structures are shown in Figure 1. In addition to the molecules that are commonly included in the Thiel set,

we also study three additional molecules: anthracene, tetracene and pentacene, which together with benzene

and naphthalene that are included in the Thiel set form the first five members of the acene family. We have

also excluded propanamide and pyridazine from the studied structures, as we were unable to obtain converged

vibrational properties for these molecules. It has become common in the literature to compare computational

methods for the calculation of exciton energies to the Thiel set [23, 10, 24, 25, 11, 12], a path that we also

take. Moreover, throughout the paper we systematically compare our results to experiment and find that both

the Monte Carlo and quadratic methods for computing the renormalization of the exciton energies due to zero-

point motion of the nuclei are remarkably accurate. This allows us to draw several important conclusions on

the microscopic mechanism of this phenomenon and to assess different methods of describing it accurately.

The structure of this paper is as follows. In section 2 we provide the necessary theoretical background for

the results that follow in section 3. Specifically, in subsection 2.1 we include a qualitative discussion of the effect

of molecular vibrations on exciton energies and based on standard expressions we lay the foundations to discuss

the Monte Carlo sampling technique and the quadratic approximation for quantifying this effect, in subsections

2.2 and 2.3 respectively. In the results section 3 we compare our results from a Monte Carlo sampling of the

exciton energies to experiment and to previous computational studies in subsection 3.1. The effect of using

different levels of electronic structure theory on the predicted magnitude of the exciton energy renormalization

is examined in subsection 3.2, and the impact of the molecular size on the exciton energy correction is discussed
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Figure 1 Molecular structures studied in this work.

in subsection 3.3. We then consider the accuracy and speed of the quadratic method in subsection 3.4, and

proceed to use it in order to attain a mode-resolved picture of the effect of nuclear quantum motion on exciton

energies in subsection 3.5. Finally, we summarize our results and conclude our study in section 4.

2 Theoretical background and computational methods

2.1 Effect of vibrations on exciton energies

We start by presenting standard results and a qualitative discussion of the effects of molecular vibrations on

exciton energies, which help inform our later discussion. In organic molecules, the highest occupied molecular

orbital (HOMO) is a bonding σ or π orbital that lowers the energy of the molecule once occupied and leads

to nuclei that are closer to each other. Therefore, the energy of such an orbital along a generalized nuclear

coordinate u of the molecular system will look similar to a Morse potential, as visualized in Figure 2a (black).
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The lowest unoccupied molecular orbital (LUMO) is an anti-bonding σ∗ or π∗ orbital that raises the energy

of the molecule once occupied and forces the nuclei apart, its energy along u showing an exponential decay

(Figure 2a, red). For most conjugated organic molecules, the lowest energy singlet exciton (S1) is formed by

exciting an electron from the HOMO to the LUMO [26], with energy:

E(S1) = E(S0) + εL − εH − JHL + 2KHL. (1)

Here E(S0) is the energy of the ground state, εH and εL are the energies of the HOMO and the LUMO

respectively, JHL the HOMO-LUMO Coulomb integral and KHL the HOMO-LUMO exchange integral. By

using equation 1, we schematically describe the energy of an exciton along u (Figure 2a, blue), having assumed

that the dependence of the integrals J,K on u does not alter its qualitative characteristics.

What can be observed from Figure 2a is that the excited state potential energy curve (blue) has a lower cur-

vature compared to the ground state one (black) due to the contribution of the anti-bonding orbital. Therefore,

if we approximate the two within the harmonic approximation, we obtain two parabolas of different curvature,

as shown in Figure 2b. If the structure was ‘frozen’ at its ground state configuration uGS, then the energy re-

quired to access the exciton state would be Estatic, which is the vertical excitation energy usually computed by

electronic structure calculations. However, due to the vibrational motion of the nuclei, the system can explore

a distribution of configurations within the region denoted by green arrows, even at 0 K. If we excited the system

from any given displaced configuration within the available region, then the excitation energy becomes smaller

than Estatic, since the lower parabola corresponding to the ground state has a higher curvature than the excited

state one. Therefore, it is expected that inclusion of the effects of nuclear fluctuations will lead to a red-shift

of exciton energies. In particular, at temperature T the absorption maximum will not be found at the energy

Estatic corresponding to vertical excitation, but at a lower energy, corresponding to the quantum mechanical

vibrational average :

Eexc(T ) =
1

Z
∑
s

〈χs(u)|Eexc(u) |χs(u)〉 e−Es/kBT , (2)

where |χs(u)〉 is a vibrational eigenstate on the ground state potential energy surface with energy Es, Z =∑
s e

−Es/kBT is the partition function, and u is the nuclear displacement.

An intuitive way of representing this mean exciton energy on a diagram of the potential energy surfaces of a

molecule, is to plot the transition energy at a ‘mean value’ configuration uMV where the vertical exciton energy

is equal to the average at temperature T [27]:

Eexc(u
MV ) = Eexc(T ). (3)

According to the mean-value theorem for integrals, there always exists such a configuration uMV . We can

therefore visualize the mean exciton energy, corresponding to the absorption band maximum in Figure 3. It

5

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
52

24
7



E

u

HOMO
LUMO
exciton

a b

nuclear motion

E s
ta

ti
c

E<
E s

ta
ti
c

u

E

uGS uES

0

Figure 2 Schematic representation of the energy of the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular
orbitals, as well as the exciton state that results from a transition between them, along a generalized coordinate u (panel a). Due
to the excited state potential energy surface having a lower curvature, nuclear motion leads to a red-shift of the energy difference
between the ground and excited states compared to its static value (panel b).

is also worth noting that the absorption maximum described by the quantum mechanical expectation value

of equation 2 is distinct from the so-called 0 − 0 energy that is often reported in the literature, and which

corresponds to the energy difference between the zero-point levels of the optimized ground and excited state

configurations, as visualized in Figure 3.

To simplify the problem of computing the exciton band maximum energy from equation 2, we use the

harmonic approximation for the ground state potential, and by substituting |χs(u)〉 with the wavefunction of a

quantum harmonic oscillator we obtain [18]:

Eexc(T ) =

∫
du|Φ(u;T )|2Eexc(u), (4)

where Eexc(u) is the vertical excitation energy at the configuration u and:

|Φ(u;T )|2=
∏
ν

(2πσ2
ν(T ))−1/2 exp

{(
− u2ν

2σ2
ν(T )

)}
, (5)

is the harmonic density at temperature T , which in turn is a product of Gaussian functions of width:

σ2
ν(T ) =

1

2ωGν
· coth

(
ωGν

2kBT

)
. (6)

In the above, atomic units and mass-weighted coordinates have been used, and ν is the index labeling the

ground state vibrational modes of the studied molecule, with ωGν the corresponding frequency. For non-linear

molecular systems there are six vibrational modes with zero frequency which correspond to translations and

rotations of the entire structure. These are not included in the sampling of the integral of equation 4.
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Figure 3 Vibrational effects result in a distribution of exciton energies (panel a, red shaded region) around a mean value, which
is different to the ‘static’ exciton energy Estatic. This can be represented as the vertical transition from the zero-point level of the
ground state, to the excited state surface, at a ‘mean value’ configuration uMV (panel a). This mean energy of the excited state
appears as the band maximum in experimental absorption spectra (panel b). In contrast to that, the 0 − 0 energy refers to the
energy difference between the zero-point levels of the optimized ground and excited states. These separate peaks cannot always be
resolved experimentally, in which cases an envelope function (panel b, dotted lined) is found instead.

2.2 Monte Carlo sampling of the exciton energy

The Monte Carlo method approximates the integral in equation 4 by generating configurations u that are

distributed according to the harmonic density at the temperature of choice T . Then, the expectation value

of equation 4 is computed as the simple average of the computed values of the vertical exciton energy Eexc(u)

at the displaced configurations. This methodology for capturing the effect of vibrations on exciton energies

has previously been applied in the context of periodic organic crystals [13], and here we extend it to isolated

organic molecules. This computational approach has the advantage that it makes no assumption about the

shape of the excited state potential energy surface and it also includes exciton-vibration interactions to all

orders. Moreover, it relies on no adjustable parameters, apart from those in the DFT functional, which are

fixed throughout the entire series of calculations. This Monte Carlo approach is conceptually very similar to the

nuclear ensemble method [19], which was recently applied to the Thiel set of molecules [12], and we compare

our results to this previous study later on, in Figure 5. For all the molecules studied we generate 100 displaced

configurations at T = 0 K and T = 300 K and their exciton energies are computed through TD-DFT within

the Tamm-Dancoff approximation [28], using the popular B3LYP hybrid functional [29] and the cc-pVDZ basis

set, as implemented within the NWChem code [30]. We hence obtain renormalized exciton energies compared

to those of a ‘static’ TD-DFT calculation for the Thiel set of molecules. We generally find that approximately

50 points are sufficient to sample the expectation value of the exciton energies (SI section S4). The numerical

results of these calculations (and the associated statistical uncertainties) are given in SI section S1, not only at

the B3LYP level, but also for two additional DFT functionals as discussed in subsection 3.2.

Since the Monte Carlo method provides an approximation to the expectation value of equation 2, we always
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compare the computed energy values to the absorption maximum which corresponds to the same exciton state

(for example the first bright excited state), and not to the so-called 0− 0 energy (see also Figure 3). However,

it is not uncommon that experimental works report the energy of the 0 − 0 transition. For the vast majority

of systems studied here, and unlike the schematic of Figure 3 which aims to emphasize the differences between

these two quantities, the energies of the 0 − 0 transition and the band maximum are either identical or very

close to each other. Accurate explicit calculations of 0−0 energies have been reported in the literature [31], and

these require finding the optimized geometry of the excited state and computing its Hessian matrix, which can

be very challenging computationally, especially for larger molecules such as the acene series and nucleobases,

which are studied here. Given that the energy of the 0 − 0 transition is in most cases very close, or even

identical to that of the band maximum, the Monte Carlo method (and also the quadratic approximation which

is outlined in the following subsection) could potentially be used to also approximate 0− 0 energies at a much

lower computational cost.

2.3 The quadratic approximation

One can further simplify the expression of equation 4 by performing a quadratic expansion of the vertical

excitation energy Eexc(u) in the coordinates uν of the vibrational normal modes, yielding:

Eexc(u) = Eexc(0) +
∑
ν

∂Eexc(0)

∂uν
uν +

1

2

∑
ν

∑
ν′

∂2Eexc(0)

∂uν∂uν′
uνuν′ + ... . (7)

Here Eexc(0) is the exciton energy at the ground state geometry and is equal to the static exciton energy Estatic

as defined previously. Substituting this expression in equation 4 gives:

Eexc(T ) = Estatic +
∑
ν

1

2ων
· ∂

2Eexc

∂u2ν
[
1

2
+ nB(ων , T )] +O(u4). (8)

In equation 8, nB(ων , T ) is the Bose-Einstein distribution for the vibrational quanta at temperature T . When

computing the expectation value of the exciton energy in equation 8, all odd terms vanish due to the harmonic

density |Φ(u;T )|2 being an even function, thus the resulting approximation is accurate to fourth order in u,

and the exciton energy renormalization is described to lowest order by the quadratic term of the expansion.

While this so-called quadratic approximation is in principle less accurate than the Monte Carlo approach which

we outlined previously, it has the advantage of separating the contributions of the different vibrational normal

modes to the exciton energy renormalization, potentially allowing for additional microscopic insights into these

effects.

Equation 8 is used for calculations with the quadratic method, which essentially involves the calculation

of the second derivative of the exciton energy along each vibrational mode of the system by using the finite

difference formula:

∂2Eexc

∂u2ν
≈ Eexc(δuν) + Eexc(−δuν)− 2Estatic

δu2ν
. (9)
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Hence two exciton energies at ±δuν for each mode ν, as well as the ‘static’ exciton energy Estatic need to be

computed. For a molecule with N atoms, this means that a total of 2 · (3N − 6) + 1 exciton energy calculations

are required, which for small molecules can be significantly smaller than the number of configurations required

to converge a Monte Carlo calculation, a point that we return to in subsection 3.4. In principle, δu is an

infinitesimal quantity that should be as small as possible in the above finite difference formula, however in

practice one needs to choose a finite value for this parameter in order to avoid numerical divergence issues.

For perfectly quadratic energy surfaces the result would be independent of the displacement δu, and we can

therefore conceptually extend the meaning of the quadratic formula to simply represent a finite displacement of

the system along an individual vibrational mode. We return to this issue in subsection 3.4.

Finally, it is worth transforming equation 8 into a different form, which is not used for practical calculations

within this work, but provides valuable intuition for the effects that we discuss. Let us assume the frequency of

vibrational normal mode ν in the ground state to be equal to ω2
Gν . If we further assume that this same normal

mode is present in the excited state with a different frequency ω2
Eν , then equation 8 becomes:

E(T ) = Estatic −
1

4

∑
ν

ω2
Gν − ω2

Eν

ωGν
[
1

2
+ nB(ων , T )] +O(u4), (10)

This formula is identical to the one appearing in Ref. [32], where E(T ) is called first moment of the exciton.

In the terms we have used here, the first moment is simply the expectation value of the exciton energy in the

presence of molecular vibrations. Equation 10 demonstrates that the renormalization of the static exciton energy

due to each normal mode depends on the frequency difference ω2
Gν − ω2

Eν , and suggests that E(T ) < Estatic as

long as the potential energy surface of the ground state has a higher curvature than that of the excited state

and therefore ω2
Gν > ω2

Eν . This analytical result is essentially the mathematical manifestation of the intuitive

picture of Figure 2, and holds in the general multi-dimensional case, at least within the validity of the quadratic

approximation.

3 Results and discussion

3.1 Comparison to published results

We compare the energies of the singlet excitons obtained within our Monte Carlo approach by computing exciton

energies at the B3LYP level of TD-DFT and including the effects of zero-point renormalization (ZPR), to the

experimental values for the corresponding maxima. The references to the experimental works are summarized

in SI section S2. These same references were collected in the original publication on the Thiel set [22], however

the values can be slightly different for a few of the studied molecules, as we had to ensure that we compare to

the band maximum in every case. We also compare the values obtained from ‘static’ TD-DFT and from highly

accurate complete active space second-order perturbation theory (CASPT2) [33] calculations in the original

Thiel publication [22] to experiment. The computed exciton energies always refer to the first single excitation

as described within TD-DFT, and we exclude any double-excitations (bi-excitons) from our analysis, which are
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Figure 4 Comparison of the different methods used to obtain the singlet exciton energies of the Thiel set to experiment. A
‘static’ TD-DFT approach at the B3LYP level (green) performs the worst, and accurate wavefunction-based methods reported in
the literature (black) improve overall agreement (the values in black refer to the CASPT2 Thiel values [22] for single excitations,
corresponding to the states computed within TD-DFT here). However, accounting for the zero-point renormalization (ZPR) of
exciton energies due to molecular quantum fluctuations leads to the best agreement with experiment (red), even when ignoring
beyond-TD-DFT electronic effects.

however accessible using wavefunction-based methods [22]. In Figure 4 we plot the computed versus experimental

values for the three approaches, for all the studied molecules for which experimental data is given in Ref. [22].

The closer a point lies to the y = x line, the better the agreement between theory and experiment. We fit a

linear model to the three sets of results, as a means of visualizing the overall agreement with experiment, from

where it becomes evident that the TD-DFT B3LYP+ZPR (red) results provide a significant improvement to

the static TD-DFT B3LYP values (green). The numerical results of the Monte Carlo simulations for the exciton

energy renormalization are summarized in SI section S1, along with the associated statistical uncertainties. The

parameters for all the linear fits are given in SI section S2. Naturally the Thiel values (black), which were

obtained using accurate wavefunction-based methods and capture correlation effects, provide an improvement

to static TD-DFT. However, from Figure 4 it is evident that the correction to TD-DFT exciton energies induced

by the quantum fluctuations of molecular vibrations is at least as significant as their correction due to the

correlation effects included in the Thiel calculations, at least for the specific set of molecules we study here.

From Figure 4 it also becomes obvious that the ZPR of exciton energies can become very large, with values

that can be as high as 1.362 eV in the case of pyrrole. The average correction is found to be (345 ± 67) meV,

which is substantial and certainly needs to be accounted for in order for exciton energy calculations to achieve

predictive accuracy. We have also investigated the effect of increasing the temperature from 0 K to 300 K,

however we found that for the vast majority of molecules the resulting difference in the exciton energy is small,

as summarized in SI section S3. This is intuitively obvious from the fact that small organic molecules are

dominated by high-frequency vibrational modes such as carbon-carbon stretching motions, which generally lie

significantly above the threshold for thermal activation at room temperature.

We employ four different statistical measures in order to rigorously compare the accuracy of the different
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bias (eV) rel.bias RMSE (eV) rel.RMSE
B3LYP 0.343 0.0673 0.495 0.091
Thiel 0.283 0.0545 0.357 0.067

B3LYP+ZPR 0.011 0.0003 0.231 0.050

Table 1 Statistical measures of the accuracy of the different methods. The average values of the (relative) bias and the (relative)
root mean-squared error (RMSE) as defined in the text are given. The comparisons to experiment refer to the 24 molecules for
which experimental data was found (see SI section S2).

4 5 6 7 8

this work
Bai et al.
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V
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Figure 5 Comparison of the exciton energies obtained within our Monte Carlo approach employing TD-DFT and accounting for
nuclear quantum effects (B3LYP+ZPR), to the values reported in Ref. [12] using the nuclear ensemble method in conjunction with
coupled cluster calculations. Both methods lead to excellent agreement with experiment.

methods presented in Figure 4, which we summarize in Table 1. In particular, for our n = 24 studied molecules

with computed exciton energies bi and experimental exciton energies ai, we compute the average values of the

bias: bias = 1
n

∑
i(bi−ai), the root mean-squared error: RMSE =

√
1
n

∑
i(bi − ai)2, as well as the relative values

to these quantities: (rel.bias) = 1
n

∑ bi−ai
ai

, (rel.RMSE) =
√

1
N

∑
i
(bi−ai)2

a2i
. The reason that we also consider the

relative quantities is that the largest errors for the static TD-DFT and Thiel approaches are found in the region

of large exciton energies, hence these molecules dominate the bias and root mean-squared error. For example,

the static TD-DFT exciton energy of ethene is renormalized from 8.8 eV to 7.7 eV once we account for nuclear

quantum effects. Using the relative bias and root mean-squared error, which are calculated by dividing by ai

and a2i respectively, we achieve a fairer comparison without under-representing the effect of molecules with lower

exciton energies. We see from Table 1 that the average value of all the employed statistical measures is minimized

when using TD-DFT at the B3LYP level combined with the zero-point renormalization (B3LYP+ZPR) of

exciton energies due to molecular vibrations. We therefore quantitatively confirm the observation of Figure 4:

for the studied set of molecules, corrections to static exciton energies due to nuclear quantum motion are

generally larger than corrections due to beyond-TD-DFT electronic effects that are included in the Thiel values.

We also quantify the spread of the four statistical quantities around their average value by computing their
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bias (eV) rel.bias RMSE (eV) rel.RMSE
Bai et al. [12] 0.211 0.040 0.250 0.047

This work 0.011 0.003 0.218 0.037

Table 2 Statistical measures of the accuracy of our work within a Monte Carlo (B3LYP+ZPR) approach and the results reported
in [12] using the nuclear ensemble method combined with coupled cluster calculations. The average values of the (relative) bias
and the (relative) root mean-squared error (RMSE) as defined in the text are given. The comparison is restricted to the structures
for which the same exciton state has been studied in our work and in Ref. [12].

standard deviation, which is given in SI Table S32. We find that the spread of the B3LYP+ZPR values is in

every case comparable to that of the Thiel values, and significantly smaller than that of the static TD-DFT

(B3LYP) values.

Similar results to ours were presented in Ref. [12] using the nuclear ensemble method and coupled cluster

calculations, although the computed values were not compared to experiment in that case. In Figure 5 we

compare our results obtained within the Monte Carlo method at the TD-DFT level to those of Ref. [12]. We

restrict the comparison to fourteen structures for which the same exciton state has been studied, as Ref. [12]

also reports the energies of some excitons that are not necessarily the lowest-lying ones, which we chose to study

in this work. We see that both computational methods lead to excellent agreement with experiment, and a

rigorous comparison is made in Table 2. Among the reported statistical measures, the RMSE and relative RMSE

are the ones that most accurately capture the accuracy of the two methods, as they do not suffer from effects

such as cancellations of errors, which are evidently present in the bias and relative bias when using TD-DFT

due to some values underestimating and some others overestimating experiment. This is not a problem with

coupled cluster calculations in the studied molecules, since these generally predict an exciton energy value that

is higher compared to TD-DFT, which also becomes apparent from the fact that the values in Ref. [12] tend

to slightly overestimate experiment, as seen in Figure 5. Since the agreement of our results within TD-DFT

to experiment is comparable to the agreement of the results of Bai et al. which were obtained using coupled

cluster calculations, it is once again highlighted that at least for the specific set of studied molecules, the ZPR

of exciton energies provides a larger, or at least comparable, correction to the static TD-DFT exciton energies

compared to the correction obtained by using more accurate electronic structure methods. Of course it is still

generally the case that one needs both an accurate description of the electronic structure and of vibrational

effects in order to achieve better quality results. To demonstrate this fact, we have chosen four molecules for

which TD-DFT calculations at the B3LYP level provide a poor starting point for the static exciton energy, as

well as inaccurate values once ZPR is accounted for, and we now perform a Monte Carlo sampling by employing

significantly more accurate coupled cluster singles and doubles (CCSD) calculations. These molecules are

benzoquinone, cyclopropene, formamide, and pyrrole, and the results are summarized in Table 3. In all cases,

the corrected exciton energy obtained by using CCSD calculations within our Monte Carlo sampling is closer to

the experimental value compared to the TD-DFT case. However, even in this case the experimental values for

benzoquinone and cyclopropene are overestimated by 0.2−0.3 eV. We attribute this behavior to the still limited

treatment of correlations within CCSD compared to more accurate methods, which results in these calculations

commonly overestimating excited state energies as also observed in the results of Ref. [12] shown in Figure 5.
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molecule B3LYP B3LYP+ZPR CCSD CCSD+ZPR experiment
benzoquinone 2.493 2.383(15) 3.126 2.999(15) 2.7 [34]
cyclopropene 6.956 6.141(30) 7.508 6.663(32) 6.45 [35]
formamide 5.722 5.254(57) 5.876 5.456(56) 5.5 [36]

pyrrole 7.030 5.668(43) 6.822 5.935(78) 5.98 [37]

Table 3 Comparison of the energy of the first excited state computed at the different levels of theory to experimental values. For
the cases where zero-point renormalization (ZPR) is computed, the associated statistical uncertainty of the final exciton energy is
given in parenthesis.

3.2 Exciton energy renormalization at different levels of theory

Ideally, one would combine accurate electronic structure calculations with our approach for accounting for

nuclear quantum motion. However, for most of the studied molecules we found that a minimum of approximately

50 points is required to converge the Monte Carlo sampling of the integral in equation 4. While the cost of 50

TD-DFT calculations of small molecules is reasonably low, it quickly becomes very high as one moves to more

accurate wavefunction-based methods. It is therefore reasonable to wonder whether the vibrational corrections

to exciton energies could be computed at one (cheaper) level of theory and applied to the static exciton energy

obtained at another (more accurate) level of theory. Some first conclusions on this can be drawn from the

comparison of the excited state energy corrections at the TD-DFT B3LYP and CCSD levels of Table 3; with

the exception of pyrrole for which the B3LYP correction is 1.5 times larger than the CCSD one, the maximum

deviation of the B3LYP zero-point renormalization from the CCSD value is 13%. While of course this is

encouraging, these data points alone are not enough to draw a general conclusion. However, given this good

agreement between the few B3LYP and CCSD excited state energy corrections that we compared, the fact

that hybrid functionals such as B3LYP are known to lead to an accurate description of the electron-vibration

interactions in organic molecules [38], and also the excellent agreement between theory and experiment in

Figure 4, it seems a reasonable conclusion that hybrid functionals provide an accurate description of exciton-

vibration coupling and the zero-point renormalization this induces.

In order to check whether the vibrational correction to exciton energies changes when using different elec-

tronic structure methods in a more systematic manner, we repeated our Monte Carlo sampling using the local

density approximation (LDA) and pure Hartree-Fock (HF) exchange within TD-DFT, while using the vibra-

tional modes obtained at the B3LYP level. This choice of functionals allows us to comment on the role of exact

exchange for exciton-vibration interactions: in particular, LDA includes no exact exchange, while B3LYP in-

cludes 20% and HF represents the case of including full exact exchange. Since the included fraction of exchange

is generally known to have little effect on the structure of a molecule and the computed ground-state vibrational

modes [38], using the B3LYP geometries and vibrational modes is a reasonable approximation. Therefore, all

differences in the values of the exciton energy renormalization between the different functionals are purely due

to the variations of the excited state wavefunction as obtained from TD-DFT.

The numerical results of the calculations employing the different functionals are presented in SI section S1.

We compare the LDA and HF energy corrections to the B3LYP ones and find that on average, LDA predicts

a red-shift of the excited state energy which is 1.3 times greater than B3LYP, and HF 1.8 times greater. This
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Figure 6 Size dependence of the correction ∆E(S1) that nuclear quantum motion induces to the singlet exciton energies of the
acene (panel a) and aliphatic hydrocarbon (panel b) families of molecules.

is in agreement with reports on electron-vibration interactions being strongly affected by the fraction of exact

exchange included in the calculation [38]. The results suggest that LDA provides a reasonable approximation to

B3LYP for computing zero-point renormalization in the studied organic molecules, with only a few structures

showing very strong deviations. As shown in SI Figure S1, the largest differences between the corrections

predicted by LDA and B3LYP are found for smaller molecules with less than 60 electrons. We attribute this

observation to the fact that the excited states of these smaller structures have a greater electronic density in

the vicinity of the localized high-frequency vibrations that can dominate in organics, hence leading to a very

strong coupling that is very sensitive to the detailed structure of the excited state wavefunction. These points

are revisited in subsections 3.3 and 3.5 where the impact of molecular size and individual vibrational modes on

zero-point renormalization are discussed respectively.

Overall, we find that in most organic structures, hybrid functionals such as B3LYP provide a good approxi-

mation to the values of zero-point renormalization computed with more accurate methods such as CCSD. For

several of the studied molecules, even the complete omission of exact exchange through the use of LDA seems

to also give reasonable results within 30% of the B3LYP values. Most strong deviations between electronic

structure methods are found for smaller molecules, which is in a sense encouraging, since these are the ones that

can commonly be studied using more expensive methods without too great of a computational cost.

3.3 The impact of the molecular size

We found in Ref. [13] for periodic molecular crystals that the correction to exciton energies due to nuclear

quantum motion becomes more important for smaller molecules. For the single-molecule systems studied here

we find that the same trend holds, as shown in Figure 6 for the acene and aliphatic hydrocarbons families

of molecules. The results in Figure 6 are obtained at the TD-DFT B3LYP level of theory. We believe that

the reason for the observed trend is that smaller molecules have a greater electronic density in the vicinity of

localized atomic motions that are activated due to quantum fluctuations, hence leading to stronger exciton-

vibration interactions. Another way of reaching the same conclusion is using Hückel theory. Let us consider the
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example of linear polyenes, such as ethene, butadiene, hexatriene and octatetraene that are studied here and are

included among other aliphatic hydrocarbons in Figure 6b, showing a decrease in the exciton energy correction

with increasing system size. For a linear polyene consisting of N carbon atoms, Hückel theory predicts the

energy of the ith orbital is: Ei = α+ 2β cos (2πn/(N + 1)), with α, β the Hückel parameters, and i = 1, 2, ..., N .

From this, we find for the HOMO-LUMO gap:

Egap ∝ sin

(
π

2(N + 1)

)
. (11)

In the limit of N →∞, this gives Egap ∝ 1/N . A similar result can be obtained for cyclic polyenes. Assuming

that the same holds for any general conjugated molecule, this suggests that in larger systems the HOMO is less

bonding and the LUMO less anti-bonding than in comparably smaller systems. Therefore, from the intuitive

picture of Figure 2, the curvature of the ground and excited state surfaces of large molecules is similar, and the

difference in their normal mode frequencies is small. Hence, according to the expression 10 that results from the

quadratic approximation, the correction to the exciton energy is also smaller than that for a smaller molecule.

This is encouraging, in the sense that corrections due to nuclear quantum motion are mostly important for small

systems, for which they are cheaper to compute.

3.4 Accuracy and speed of the quadratic method

Having established the accuracy of the Monte Carlo method for computing the exciton energy renormalization

due to nuclear quantum motion, we now proceed to use it as a benchmark to assess the accuracy of the quadratic

method. Figure 7 visualizes the quadratic versus the Monte Carlo correction for each of the studied molecules,

using TD-DFT and the B3LYP functional, along with the cc-pVDZ basis set. The better the agreement between

the two methods for a given molecule, the closer the associated point lies to the y = x line (dashed line). Overall,

the agreement between the two methods is good, and we propose that the quadratic method can indeed be used

to make quantitative predictions of exciton energies including vibrational renormalization effects. Particularly

for smaller molecules, this has the additional advantage that it comes at a lower computational cost compared

to Monte Carlo sampling (see also theoretical background section and the discussion accompanying Figure 9

below). The converged values for the exciton energies as predicted by the quadratic method are summarized in

SI section S5.

As already mentioned in subsection 2.3, when computing the quadratic correction to the exciton energies, one

needs to make a choice for the displacement δu appearing in equation 8. We find that generally a displacement

of δu = σ, where σ is the standard deviation of the thermal quantum distribution appearing in equation 6, leads

to results that are in very close agreement with the computed Monte Carlo values. Figures 8a and 8b show the

quadratic correction of pyrazine and tetracene respectively, comparing the quadratic values at different values

of δu (red crosses) with the Monte Carlo correction (blue line) and its associated statistical uncertainty (blue

shaded region). The variation of the quadratic correction due to changes in δu is generally comparable to the

statistical uncertainty of the Monte Carlo method.
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Figure 7 Comparison of values predicted by the quadratic and Monte Carlo methods for the zero-point renormalization of the
exciton energy of the different molecules. The y = x line is given in blue for reference.
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Figure 8 Zero-point renormalization ∆E of the exciton energy predicted by the quadratic method, with respect to the displacement
δu appearing in equation 8), for the case of pyrazine (panel a) and tetracene (panel b). The energy shift predicted by the Monte
Carlo approach is given for reference (blue line) and its statistical uncertainty indicated with the blue shaded region.

We also explore the computational cost of the quadratic method and compare to that of a Monte Carlo

sampling. In Figure 9 we visualize the CPU hours required to compute the correction to the static exciton

energies that is induced by the zero-point motion of the different molecules. For the Monte Carlo sampling, the

calculation always includes taking an average over 100 configurations as mentioned previously, which we find

leads to converged results and small statistical uncertainties to the final exciton energies (SI section S4). Overall,

the quadratic method is cheaper to use for smaller structures with fewer electrons, where we also argue that the

correction to exciton energies due to vibrations is larger (see Figure 6 and discussion). Therefore, given also the

accuracy of this method and the mode-resolved information it provides (see subsection 3.5), we propose that it

is the better alternative once one approaches the limit of smaller molecules. For larger structures with several

vibrational normal modes we find that the Monte Carlo method provides a faster estimate of the red-shift and

should thus be preferred.
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Figure 9 Comparison of the CPU hours required to compute the exciton energy correction of the different molecules due to nuclear
quantum motion, using the Monte Carlo (black crosses) and quadratic (red crosses) methods. The solid lines are given as guides
to the eye.

3.5 Mode-resolved picture for the exciton energy renormalization

While the quadratic method for computing the renormalization of exciton energies due to quantum fluctuations

is in principle less accurate than performing a Monte Carlo sampling, it is a cheaper and simpler method that

is easier to implement computationally. However, perhaps its most important advantage is the fact that it

separates the contributions of the individual vibrational normal modes to the exciton energy renormalization,

as revealed by equation 8. In Figures 10b and 11b we visualize the mode-resolved renormalization of the exciton

energy of pyrazine and ethene respectively, at T = 0 K. From these figures, it becomes evident that for both

molecules, it is only a few modes that dominate the zero-point renormalization of the exciton energy. In both

cases, the most important mode for the exciton energy renormalization is highlighted in a red circle. For

pyrazine, this dominant mode is responsible for 35% of the exciton energy renormalization, while for ethene for

56%.

In order to gain a deeper microscopic understanding of the effect of the specific vibrational modes on the

exciton states of these molecules, we plot the undistorted ‘static’ exciton wavefunctions (represented by the

transition density) in Figures 10a and 11a respectively, together with the wavefunction at a typical distorted

configuration (δu = σ) along these dominant modes, visualized in Figures 10d and 11d. For comparison, we

also plot the exciton wavefunction when the molecule is displaced along a mode which is weakly coupled to the

exciton in Figures 10c and 11c, together with the displacement pattern of these motions. These weakly coupled

vibrational modes are highlighted in green in Figures 10b and 11b. It is evident that while the displacement of

the dominant modes leads to a significant change of the excitonic wavefunction from its form at the equilibrium

geometry, this is not the case for weakly coupled modes.

The dominating modes for exciton renormalization can sometimes be qualitatively explained from a chem-

ically intuitive perspective by considering the conventional skeletal structures of the ground and excited state
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Figure 10 Mode-resolved zero-point renormalization of the exciton energy of pyrazine. The renormalization of the exciton energy
due to the various normal modes of vibration is given in panel b, with a weakly coupled mode highlighted in green (displacement
pattern in panel c), and the most strongly coupled mode highlighted in red (displacement pattern in panel d). The exciton
wavefunction (transition density) is visualized in panel a in the optimized geometry, and along the weakly and strongly coupled
modes in panels c and d respectively. The resonance structures of pyrazine in the ground state and upon photoexcitation are shown
in panel e.

molecules, and (from equation 10) which stretching modes are likely to be far weaker (lower frequency) in the

excited state compared to the ground state. For pyrazine in Figure 10, as an aromatic molecule similar to

benzene, it has two principal resonance structures as shown in Figure 10e. The HOMO and LUMO are both π

orbitals and excitation to S1 can be qualitatively drawn as breaking a π bond, leading to a (singlet) biradical.

The biradical [39] has numerous possible resonance structures, three of which are drawn in Figure 10e. These

quinoidal structures suggest that in the S1 state, for a given nitrogen it will be easier to elongate one C-N

bond while shortening the other to form a quinoidal-like biradical. This corresponds to the dominant stretching

vibration in Figure 10d.

Similarly, for ethene in Figure 11, in the ground S0 state the molecule is planar due to the π bond, although

this causes some small steric hindrance between hydrogen atoms of different carbons. Upon exciting to the S1

state, the π bond is broken, such that it is much easier to rotate around the central C-C bond as shown in Fig-

ure 11e and we would expect the frequency of this mode to drastically reduce, leading to a large renormalization

by equation 10. This rotation is the dominating mode as shown in Figure 11d.

It is not always true that a subset of modes can be identified to dominate the exciton energy renormalization,

however some patterns can still be observed. Perhaps the most obvious one is a ring-breathing mode of frequency

in the vicinity of 1600 cm−1, which is largely responsible for the exciton energy renormalization in several cyclic

compounds, which can be intuitively understood as in the case of pyrazine in Figure 10e, where this motion

contributes 35% of the renormalization. Similarly for other cyclic structures: benzoquinone (20%), pyridine

(38%), pyrimidine (39%), tetrazine (62%) and triazine (30%). For each of the studied molecules, we give the

percentage of contribution of the mode that most strongly couples to the exciton energy renormalization, along

18

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
52

24
7



ω (cm-1)
300020001000

0

-0.2

-0.4

-0.6

-0.8

Δ
Ε 

(e
V
)

ba c

d e

hν

H H

HH

H H

HH

H H

HH

Figure 11 Mode-resolved zero-point renormalization of the exciton energy of ethene. The renormalization of the exciton energy due
to the various normal modes of vibration is given in panel b, with a weakly coupled mode highlighted in green (displacement pattern
in panel c), and the most strongly coupled mode highlighted in red (displacement pattern in panel d). The exciton wavefunction
(transition density) is visualized in panel a in the optimized geometry, and along the weakly and strongly coupled modes in panels
c and d respectively. The resonance structures of ethene in the ground state and upon photoexcitation are shown in panel e.

with the frequency of this motion, in SI section S5. Overall, in most molecules high-frequency modes dominate

the renormalization of exciton energies, with the average frequency of the most strongly coupled mode being

ω̄dominant = (1024 ± 121) cm−1. This dominance of high-frequency modes is consistent with our observation

of subsection 3.3 that zero-point renormalization is, for the molecules studied here, more prominent in smaller

molecular structures. The excited states of these systems have a greater electronic density in the vicinity of

localized high-frequency motions, such as carbon-carbon stretches, hence the corresponding wavefunctions show

stronger variations upon displacement of the atoms. It is for the same reasons that larger differences in the

computed energy corrections between the different functionals tend to appear for smaller molecular structures,

as was seen in subsection 3.2; the strong exciton-vibration interactions in these systems can be very sensitive to

the local structure of the excited state wavefunctions, which depends on the level of electronic structure theory.

4 Conclusions

In this work we have presented an intuitive picture for the red-shift of exciton energies that is caused by nuclear

quantum motion, and two computational approaches for estimating its magnitude. We find that this red-shift

can indeed be very substantial, reaching values of more than 1 eV in some cases. We rigorously compare our

results for the exciton energies of a large set of molecules, obtained within a Monte Carlo framework and

time-dependent density functional theory, to experiment and previous computational studies, and find that

accounting for the effects of nuclear quantum motion in this manner leads to predictive accuracy for exciton
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energies. We show that the magnitude of the red-shift provided by quantum fluctuations is typically larger for

smaller molecules, a result which we explain within a Hückel theory picture. Moreover, we find that while the

predicted red-shift caused by vibrations depends on the level of theory used for the exciton calculations, TD-

DFT employing hybrid functionals should provide a good compromise between accuracy and computational cost

for estimating its magnitude. Naturally, further improvement of the results can be achieved by combining our

Monte Carlo approach with more accurate methods of electronic structure calculations, such as coupled cluster,

as we also demonstrate for a subset of the studied molecules. Additionally, we employ a quadratic approximation

for computing the magnitude of exciton energy renormalization due to zero-point motion, which allows us to

disentangle the contribution of individual normal modes to this effect. While this method is conceptually easier

to implement compared to a Monte Carlo sampling, it is in principle less accurate as well. Nevertheless, we

find that it performs very well for the diverse set of molecules which are studied here, and it also provides

a cheaper way of computing the renormalization of exciton energies in smaller molecules, where this effect is

also most relevant. By using the quadratic method we find that for several molecules the renormalization of

the exciton energy is dominated by a few normal modes of vibration, with a ring-breathing motion playing a

prominent role in the red-shift of the exciton energy in several cyclic compounds. Overall, our study provides

critical microscopic insights into the effect of nuclear quantum motion on exciton energies at equilibrium, and

emphasizes its importance for achieving predictive accuracy.

Supplementary Material

See supplementary material for the full results of the Monte Carlo sampling using different functionals, details

for the comparison of these results to experiment, convergence tests and results at 300 K. Detailed data on the

vibrational modes dominating the quadratic correction of the exciton energy are also provided.

Data availability

The data that support the findings of this study are openly available in Apollo, the University of Cambridge

repository, at https://doi.org/10.17863/CAM.70585, reference number [40].
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[30] E. Aprà et al. NWChem: Past, present, and future. The Journal of chemical physics, 152(18):184102,

2020.

[31] Pierre François Loos, Nicolas Galland, and Denis Jacquemin. Theoretical 0-0 Energies with Chemical

Accuracy. Journal of Physical Chemistry Letters, 9(16):4646–4651, 2018.

[32] Francisco J.Avila Ferrer, Javier Cerezo, Emiliano Stendardo, Roberto Improta, and Fabrizio Santoro.

Insights for an accurate comparison of computational data to experimental absorption and emission spectra:

Beyond the vertical transition approximation. Journal of Chemical Theory and Computation, 9(4):2072–

2082, 2013.
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[38] Jonathan Laflamme Janssen, Michel Côté, Steven G. Louie, and Marvin L. Cohen. Electron-phonon

coupling in C60 using hybrid functionals. Physical Review B - Condensed Matter and Materials Physics,

81(7):2–5, 2010.

23

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
52

24
7



[39] Thijs Stuyver, Bo Chen, Tao Zeng, Paul Geerlings, Frank De Proft, and Roald Hoffmann. Do Diradicals

Behave like Radicals? Chemical Reviews, 119(21):11291–11351, 2019.

[40] Timothy J.H. Hele, Bartomeu Monserrat, and Antonios M. Alvertis. Data supporting: ‘Systematic im-

provement of molecular excited state calculations by inclusion of nuclear quantum motion: a mode-

resolved picture and the effect of molecular size’, Apollo, University of Cambridge repository, https:

//doi.org/10.17863/CAM.70585. 2021.

24

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
52

24
7

https://doi.org/10.17863/CAM.70585
https://doi.org/10.17863/CAM.70585


cyclopropene cyclopentadiene norbornadiene

benzene naphthalene anthracene tetracene pentacene

O

furan

NH

pyrrole

N

HN

imidazole

N

pyridine

N

N

pyrazine
N

N

pyrimidine

NN

N

s-triazine s-tetrazine

O

formaldehyde

O

acetone

O

O

p-benzoquinone

OH2N

formamide

O

NH2

acetamide

HN

O N NH2

cytosine

HN

O N
H

O

thymine

HN

O
H
N O

uracil

N

N

NH2

N

H
N

adenine

ethene butadiene E-hexatriene all-E-octatetraene

Unsaturated Aliphatic Hydrocarbons

Aromatic Hydrocarbons and Heterocycles

Aldehydes, Ketones and Amides

Nucleobases

N

N N

N



E

u

HOMO
LUMO
exciton

a b

nuclear motion

E s
ta

ti
c

E<
E s

ta
ti
c

u

E

uGS uES

0



a b

u

E

uMV

So

S1

hωo
2

E s
ta
ti
c

m
ea
n

ω1<ωo hω1
2

0-0

E

ab
so
rb
an
ce

0-0
mean



2

3

4

5

6

7

8

E(
S

1)
 (

th
eo

ry
) 

(e
V
)

9

2 3 4 5 6 7 8
E(S1) (exp.) (eV)

y = x
B3LYP+ZPR

Thiel
B3LYP



4 5 6 7 8

this work
Bai et al.
y = x

E(S1) (exp.) (eV)

E(
S

1)
 (

th
eo

ry
) 

(e
V
)

4

5

6

7

8



10 15 20 25 30 35 40
Number of electrons

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30

Δ
E(

S
1)

 (
eV

)

Number of electrons
15 20 25 30 35 40 45 50 55 60

0

-0.2

-0.4

-0.6

-0.8

-1

Δ
E(

S
1)

 (
eV

)

acenes aliphatic hydrocarbonsa b



Δ
Ε q

ua
dr

at
ic
 (

eV
)

0

-0.5

-1

-1.5
0-0.5-1-1.5

ΔΕMC (eV)



δu (units of σ)

Δ
Ε 

(e
V
)

-0.20

-0.22

-0.24

-0.26
0.4 0.6 0.8 1 1.2 1.4

δu (units of σ)
0.4 0.6 0.8 1 1.2 1.4

a b

Δ
Ε 

(e
V
)

-0.02

-0.04

-0.06

-0.08



150100500
Number of electrons

0

200

400

600

800
C
PU

 h
ou

rs

Monte Carlo

quadratic



0 1000 2000 3000
ω (cm-1)

-60

-40

-20

0

20

Δ
Ε 

(m
eV

)

ba c

d e

N

N

N

N

N

N

N

N N

N

hν



ω (cm-1)
300020001000

0

-0.2

-0.4

-0.6

-0.8

Δ
Ε 

(e
V
)

ba c

d e

hν

H H

HH

H H

HH

H H

HH


