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Abstract

Thermal quantum time-correlation functions are of fun-
damental importance in quantum dynamics, allowing
experimentally-measurable properties such as reaction rates,
diffusion constants and vibrational spectra to be computed
from first principles. Since the exact quantum solution scales
exponentially with system size, there has been considerable
effort in formulating reliable linear-scaling methods involv-
ing exact quantum statistics and approximate quantum dy-
namics modelled with classical-like trajectories. Here we
review recent progress in the field with the development of
methods including Centroid Molecular Dynamics (CMD),
Ring Polymer Molecular Dynamics (RPMD) and Ther-
mostatted RPMD (TRPMD). We show how these methods
have recently been obtained from ‘Matsubara dynamics’, a
form of semiclassical dynamics which conserves the quantum
Boltzmann distribution. We also rederive t → 0+ quantum
transition-state theory (QTST) in the Matsubara dynamics
formalism showing that Matsubara-TST, like RPMD-TST,
is equivalent to QTST. We end by surveying areas for fu-
ture progress. Submitted as a New View article to Molecu-
lar Physics (www.tandfonline.com/toc/tmph20/current) on
11th January 2017.

1 Introduction

Quantum thermal time-correlation functions [1, 2] are rou-
tinely used to calculate reaction rates, spectra and diffu-
sion constants amongst many other physically observable
quantities, and provide a useful bridge between the algebra
of quantum mechanics and experimental measurement. In
general they can only be computed exactly for very small or
model systems, and there is consequently a need for reliable
approximate computation with classical-like scaling (i.e. lin-
ear scaling w.r.t. the number of dimensions of the system).
The purpose of this New View article is to review the origins
of a number of these methods; namely the approximations
they make to the exact quantum evolution and the condi-
tions under which they are likely to be valid. This should
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allow a theoretician to discern for themselves the optimal
method for a given problem.

This article is designed to provide an overview of the field
with references for further reading and is not intended to
be exhaustive. Applications of many of the methods dis-
cussed here have already been extensively reviewed, includ-
ing centroid molecular dynamics (CMD) [3], ring polymer
molecular dynamics (RPMD) [4], RPMD rate theory [5]
and the linearized semiclassical initial-value representation
(LSC-IVR) [6]. Consequently, applications of these methods
are only mentioned when pertinent.

We also rederive quantum transition-state theory (QTST)
in the Matsubara formalism, showing that Matsubara TST
is identical to QTST provided that the dividing surface is
only a function of the Matsubara modes, and which in turn
is identical to RPMD-TST when the dividing surface is in-
variant to cyclic permutation in imaginary time. For reviews
on rate theory more generally, see Refs. [7–10].

There exist many other methods to simulate quantum dy-
namics which are not covered here, including exact quan-
tum methods such as multi-configuration time-dependent
Hartree (MCTDH) [11], matrix-based methods [12], and
path-integrals [13]. Other approaches include gaussian
wavepacket propagation [14], semiclassical dynamics [15,16]
and mixed quantum-classical dynamics [17–19].

For most of the article we assume that dynamics is on
a single Born-Oppenheimer potential energy surface that is
known and differentiable (either of a model form, fitted to
some set of parameters, or from ab initio electronic struc-
ture theory); the computation of accurate potential energy
surfaces is a discipline in itself. We touch upon extensions
to non-adiabatic dynamics towards the end. We generally
assume that the systems being described are in thermal equi-
librium; application to non-equilibrium systems is an inter-
esting area of present research [20].

The article is structured as follows. In section 2 we re-
view classical and quantum thermal time-correlation func-
tions, the Wigner transform and the Moyal series. Sec-
tion 3 touches upon LSC-IVR, and section 4 provides the
derivation of Matsubara dynamics. Section 5 covers ap-
proximations to Matsubara dynamics such as CMD, RPMD
and TRPMD, and section 6 gives an alternative derivation
of QTST in the Moyal/Matsubara formalism. Section 7
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presents directions for future research and section 8 con-
cludes.

2 Thermal time-correlation func-
tions

Here we briefly present background theory sufficient to fol-
low the remainder of the article; further detail is available
in standard texts [1, 2, 21].

2.1 Classical

For simplicity we consider a one-dimensional system, exten-
sion to further dimensions being straightforward [2], with
position q and momentum p and a classical Hamiltonian

H(p, q) =
p2

2m
+ V (q). (1)

The thermal correlation function between observables A and
B at inverse temperature β ≡ 1/kBT (where kB is the Boltz-
mann constant) is generally written as

GAB(t) =
1

2π~

∫
dp

∫
dq e−βH(p,q)A(p, q)B(pt, qt) (2)

where p and q are sampled at zero time and (pt, qt) ≡
(pt(p, q, t), qt(p, q, t)) are the solutions to a classical trajec-
tory for length t starting at (p, q) at time t = 0. The corre-
lation function can equivalently be given as

GAB(t) =
1

2π~

∫
dp

∫
dq e−βH(p,q)A(p, q)B(p, q, t) (3)

where B(p, q, t) corresponds to an initial phase-space distri-
bution (p, q) propagated for time t. Formally, one can obtain
the dynamical equations of motion by differentiating Eq. (3)
w.r.t. time to obtain

d

dt
B(p, q, t) =

∂B(p, q, t)

∂q

dq

dt
+
∂B(p, q, t)

∂p

dp

dt
(4)

=
∂B(p, q, t)

∂q

p

m
− ∂B(p, q, t)

∂p

∂V (q)

∂q
(5)

where we have applied Newton’s first and second law to
obtain Eq. (5). Strictly speaking, we are also assuming that
the observables themselves are not explicit functions of time,
i.e. (

∂B(p, q, t)

∂t

)
p,q

= 0, (6)

and likewise for A, which is the case for all correlation func-
tions considered in this article. Equation (5) allows us to
define a classical Liouvillian1

L =
p

m

∂

∂q
− ∂V (q)

∂q

∂

∂p
(7)

1Following the convention of Zwanzig [1] we define the Liouvillian
without a prefactor of i.

such that

d

dt
B(p, q, t) = LB(p, q, t) (8)

which has a formal solution B(p, q, t) = eLtB(p, q, 0) and
therefore

GAB(t) =
1

2π~

∫
dp

∫
dq e−βH(p,q)A(p, q)eLtB(p, q, 0).

(9)

To see how Eq. (2) is equivalent to Eq. (3) we differentiate
Eq. (2) w.r.t. t, obtaining

d

dt
B(pt, qt) =

∂B(pt, qt)

∂qt

dqt
dt

+
∂B(pt, qt)

∂pt

dpt
dt

(10)

but if Eq. (2) is a solution to Eq. (3) then by Eq. (8), the LHS
of Eq. (10) must be equal to the action of the Liouvillian on
B(pt, qt), which is

LB(pt, qt) =
∂B(pt, qt)

∂qt
Lqt +

∂B(pt, qt)

∂pt
Lpt. (11)

Comparing Eq. (10) and Eq. (11) gives

dqt
dt

= Lqt,
dpt
dt

= Lpt (12)

which have formal solutions qt = eLtq, pt = eLtp. This
means that instead of propagating a phase space density
in B(p, q, t), one can simply propagate individual positions
and momenta to find (pt, qt) and insert into the function
B(pt, qt), which is computationally easier. However, if L
contains higher derivatives in p and/or q (as is the case in
exact quantum evolution and stochastic dynamics) then this
convenient property no longer holds.

If B = H, then from Eq. (7) LH = 0, meaning that
classical dynamics conserves the classical Hamiltonian, as to
be expected. It follows that Le−βH(p,q) = 0 and the classical
dynamics conserves the classical Boltzmann distribution.

If we differentiate Eq. (3) w.r.t. t, apply Eq. (7) use inte-
gration by parts on the derivatives in p and q we obtain

d

dt
GAB(t) = − 1

2π~

∫
dp

∫
dq e−βH(p,q)A(p, q)

←−
LB(p, q, t)

(13)

where
←−
L is ‘acting backwards’ onto e−βH(p,q)A(p, q), but

using the product rule and that Le−βH(p,q) = 0, this gives

d

dt
GAB(t) = − 1

2π~

∫
dp

∫
dq e−βH(p,q)B(p, q, t)LA(p, q).

(14)

Integration of this, noting that B(p, q, 0) = B(p, q) gives

GAB(t) =
1

2π~

∫
dp

∫
dq e−βH(p,q)B(p, q)e−LtA(p, q)

=GBA(−t) (15)
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which is detailed balance. Note that this is a stronger condi-
tion than time reversal symmetry, which only implies [from
Eq. (13)] that

GAB(t) =
1

2π~

∫
dp

∫
dq B(p, q)e−Lt[e−βH(p,q)A(p, q)]

(16)

where the distribution has to be propagated too. In general,
if the dynamics conserves the distribution then the correla-
tion function will observe detailed balance (strictly speaking,
for stochastic systems this is a necessary but not sufficient
requirement [22,23]).

2.2 Quantum

Similar to the classical case, we consider a one-dimensional
system with mass m, co-ordinate q with conjugate momen-
tum p and quantum Hamiltonian

Ĥ =
p̂2

2m
+ V (q̂). (17)

In this section we introduce a variety of quantum time-
correlation functions and briefly discuss their properties,
particularly concerning the ease with which they may be
approximated by classical-like dynamics.

2.2.1 Conventional time-correlation function

The conventional quantum time-correlation function is given
by [2, 24]

cAB(t) = Tr
[
e−βĤÂeiĤt/~B̂e−iĤt/~

]
(18)

such that cAB(0) = Tr[e−βĤÂB̂], giving the thermal average

of Â and B̂. Since [e−iĤt/~, Ĥ] = 0, cAH(t) = cAH(0) and
the quantum dynamics conserves the quantum Hamiltonian.

This is sometimes called the ‘asymmetric-split’ correlation
function, since the Boltzmann operator is placed asymmetri-
cally on one side of Â. To picture this function as in Fig. 1a
we insert identities into Eq. (18), which when Â and B̂ are
functions of position only gives [24]

cAB(t) =

∫
dx

∫
dy

∫
dz〈x|e−βĤ |y〉A(y)

× 〈y|eiĤt/~|z〉B(z)〈z|e−iĤt/~|x〉 (19)

We can therefore imagine starting from point x in Fig. 1a

and taking an imaginary time path e−βĤ ending at y, at
which A(y) is evaluated. We then take a backwards real

time path eiĤt/~ from y to z, at which B(z) is evaluated,

followed by a real time path e−iĤt/~ from z to x, completing
the trace.

However, the correlation function is not necessarily real,
even for an autocorrelation function (where Â = B̂); one can

show by exploiting [e−βĤ , e±iĤt/~] = 0 that for arbitrary Â
and B̂

cAB(−t)∗ = cBA(t). (20)

Figure 1: Different forms of quantum mechanical correla-
tion functions discussed in this article. The imaginary time
path shown as a curved line, the real time path with a
wavy line and the Â and B̂ operators as blue and red cir-
cles respectively. (a) is the conventional asymmetric-split
correlation function, (b) one form of symmetric splitting,
(c) the Kubo-transformed function (with the operator Â
‘smeared’ along the imaginary time trajectory). The Gen-
eralized Kubo transformed function (d) is obtained by poly-
merising (b), and is equivalent to the conventional Kubo
transformed function (c) in the N →∞ limit for linear op-
erators.

2.2.2 Symmetric-split time-correlation function

Since Eq. (18) can be complex and the classical correlation
function is not, we wish to rewrite Eq. (18) to be real. A
simple way to do this would be to take the real part of
Eq. (18), giving

c̄AB(t) =:<cAB(t)

=Tr

[
1

2
(Âe−βĤ + e−βĤÂ)eiĤt/~B̂e−iĤt/~

]
(21)

which is pictured in Fig. 1b. Although this looks more com-
plex that Eq. (18), if we insert identities as in Eq. (19) and
then change to sum-and-difference variables q = (x + y)/2,
∆ = y − x, noting that the Jacobian of the transformation
is unity, we obtain (for Â which is a linear function of x̂)

c̄AB(t) =

∫
dq

∫
d∆

∫
dz〈q −∆/2|e−βĤ |q + ∆/2〉A(q)

× 〈q + ∆/2|eiĤt/~|z〉B(z)〈z|e−iĤt/~|q −∆/2〉.
(22)

We can, for linear operators, consider Â to be acting at the
mid-point of the imaginary time trajectory (this can also
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hold for some nonlinear operators, see Section 6).

2.2.3 Kubo-transformed time-correlation function

Although Eq. (21) is real and therefore an improvment upon
Eq. (18) for classical approximation, the action of Â at spe-
cific points in imaginary time (rather than smoothed over all
points) leads to difficulties with classical approximations, as
we shall see later. A correlation function which treats all
points in imaginary time equally is the Kubo-transformed
correlation function [25]

c̃AB(t) =
1

β

∫ β

0

dλ Tr[e−(β−λ)ĤÂe−λĤeiĤt/~B̂e−iĤt/~]

(23)

which corresponds to the zero-time operator Â being

‘smeared’ through the imaginary time operator e−βĤ , as
pictured in Fig. 1c. This can be obtained for some quantum
mechanical properties using linear response theory [26]. In
addition to the symmetry properties for Eq. (18), by switch-
ing integration limits one can show that the Kubo trans-
formed correlation function is always real,

c̃AB(t) = c̃AB(t)∗ (24)

and that it obeys detailed balance, i.e.

c̃AB(−t) = c̃BA(t) (25)

and so is more ‘classical’ than the correlation function in
Eq. (18). Further symmetry properties of these correlation
functions are given in Ref. [27].

2.2.4 Generalized Kubo-transformed time-
correlation function

It is possible to rewrite the Kubo-transformed correlation
function in a more symmetric form, known as the Gener-
alized Kubo Transformed correlation function [28–31]. To
sketch how this comes about, consider dividing up the imag-

inary time trajectory e−βĤ in the symmetric-split Eq. (22)

into N chunks, and at each chunk inserting e−iĤt/~eiĤt/~,
as pictured in Fig. 1d for N = 3. This gives

C
[N ]
AB(t) =

∫
dq

∫
d∆

×
N−1∏
i=0

〈qi−1 −∆i−1/2|
1

2
(Âe−βN Ĥ + e−βN ĤÂ)|qi + ∆i/2〉

× 〈qi + ∆i/2|eiĤt/~B̂e−iĤt/~|qi −∆i/2〉 (26)

where (for linear Â and B̂)

Â =
1

N

N−1∑
k=0

Âk (27)

with Âk acting on the kth path-integral ‘bead’ and like-
wise for B̂, where we loosely define qi to be the ith bead
(see appendix A for a discussion of ring polymers and bead
terminology). One can show (by evaluating the summa-
tions in the correlation function term-by-term and remov-

ing eiĤt/~e−iĤt/~ = 1̂ identities) that with Â and B̂ defined
as in Eq. (27) then this is equal to the conventional Kubo
transformed correlation function in the large N limit [32]

lim
N→∞

C
[N ]
AB(t) = c̃AB(t). (28)

Nonlinear operators [which cannot easily be written as a
sum like Eq. (27)] are required for Quantum Transition-
State Theory, and are detailed in Section 6. As we shall
see later, the advantage of rewriting Eq. (23) as the Gener-
alized Kubo form is that the latter is symmetric with respect
to permutation in imaginary time τ = βN~, corresponding
to permuting the co-ordinates qi → qi+1 [32].

The above is not an exhaustive list of quantum time-
correlation functions; there are theoretically infinitely may
ways to split the zero-time operator within the Boltzmann
distribution [30, 33], one other common technique being

e−βĤ/2Âe−βĤ/2 [24, 33].
By inserting energy eigenstates into Eq. (18) and Eq. (23)

one can relate the spectrum of the conventional and Kubo-
transformed correlation functions [27,34]

ĨAB(ω) =
1− e−β~ω

β~ω
IAB(ω) (29)

where the spectrum is given by

ĨAB(ω) =
1

2π

∫ ∞
−∞

dt e−iωtc̃AB(t). (30)

and likewise for IAB(ω).

2.2.5 Applications

To illustrate the scope of correlation functions, we now
sketch how they may be used to compute diffusion, rates
and spectra.

The diffusion constant is obtained as the integral of the
Kubo-transformed velocity-velocity autocorrelation func-
tion [35]

D =
1

3Z

∫ ∞
0

dt c̃v·v(t) (31)

where Z is the partition function of the system. The rate
constant can be obtained from the long-time limit of the
flux-side time-correlation function [26, 33, 36, 37] (of the
asymmetric, symmetric Kubo-transformed, and many other
forms [33])

kQ(β) = lim
t→∞

1

Qr(β)
c̃fs(t). (32)

4



where Qr(β) is the partition function in the reactant region
and the flux-side correlation function is

cfs(t) = Tr
[
e−βĤ F̂ eiĤt/~h(q̂ − q‡)e−iĤt/~

]
(33)

although Eq. (32) also holds for the Kubo-transformed cor-
relation function amongst others [33]. The flux operator is
F̂ = [δ(q̂ − q‡)p̂ + p̂δ(q̂ − q‡)]/2m where δ(x) is the Dirac
delta function and q‡ is the location of the position-space
dividing surface. Using the quantum mechanical continuity
equation one can show that the exact quantum rate is in-
dependent of the location of the dividing surface [38]. The
heaviside function h(q̂ − q‡) is defined such that

h(q − q‡) =

{
1 q ≥ q‡
0 q < q‡.

(34)

Since the flux operator is the time-derivative of the heaviside
operator, the flux-side function is the integral of the flux-flux
function [33]

cfs(t) =

∫ t

0

cff(t′)dt′ (35)

where cff(t) is obtained by changing h(q̂ − q‡) for F̂ in
Eq. (33), and cfs(t) is minus the derivative of the side-side
function

cfs(t) = − d

dt
css(t) (36)

where css(t) is obtained by changing F̂ for h(q̂ − q‡) in
Eq. (33). These identities, which generally hold for most
classical flux-side time correlation functions too, will prove
useful later.

For infra-red spectra, the absorption coefficient is given
as [34]

α(ω) =
4βπ2ω2

3Vcn(ω)Z
Ĩµµ(ω) (37)

where Ĩµµ(ω) is the Kubo-transformed dipole autocorrela-
tion function found using Eq. (30), V corresponds to the
volume, c the speed of light and n(ω) the refraction coeffi-
cient (approximately unity in the gas phase).

The above is not exhaustive; other observables can be
obtained from thermal quantum time-correlation functions
such as neutron scattering [39].

2.3 Moyal series

Having given the exact quantum time-correlation functions
in the conventional operator representation, we now con-
sider how the Wigner transform and Moyal series which can
be used to rewrite correlation function in terms of phase-
space positions and momenta. We use the conventional
Kubo-transformed function in this section, but the deriva-
tion is equally applicable to the asymmetric or symmetric-
split forms.

Inserting position-space identities followed by changing to
sum and difference variables as in Eq. (22) gives

cAB(t) =

∫
dq

∫
d∆ 〈q −∆/2|Kβ(Â)|q + ∆/2〉

× 〈q + ∆/2|B̂(t)|q −∆/2〉. (38)

where we have abbreviated the Kubo transform as

Kβ(Â) =
1

β

∫ β

0

dλ e−(β−λ)ĤÂe−λĤ (39)

and B̂(t) = eiĤt/~B̂e−iĤt/~ is the Heisenberg time-evolved
B̂. We can now insert another identity

1 =

∫
d∆′δ(∆ + ∆′)

=
1

2π~

∫
d∆′

∫
dp eip(∆+∆′)/~ (40)

where we have written the Dirac delta function on the first
line as its Fourier transform on the second, and convert the
∆ to −∆′ in the second bra-ket of Eq. (38), giving

cAB(t) =
1

2π~

∫
dq

∫
dp

×
∫
d∆eip∆/~〈q −∆/2|Kβ(Â)|q + ∆/2〉

×
∫
d∆′eip∆

′/~〈q −∆′/2|eiĤt/~B̂e−iĤt/~|q + ∆′/2〉

=
1

2π~

∫
dq

∫
dp [Kβ(Â)]W(q, p)[B(t)]W(q, p) (41)

where [Ô]W defines the Wigner transform of operator Ô [40]

[Ô]W(q, p) =

∫
d∆eip∆/~〈q −∆/2|Ô|q + ∆/2〉 (42)

All we have done in Eq. (38)–Eq. (42) is to rewrite the corre-
lation function is terms of classical-like phase-space variables
p and q. No approximation has been made, an in general
solving Eq. (41) exactly is just as difficult as solving the
original Eq. (23). The advantage of writing in a classical-like
form is the ability to make approximations to the correlation
functions such that they can be evaluated using classical or
classical-like dynamics.

We now obtain the Liouvillian for a Wigner-transformed
correlation function, starting by differentiating Eq. (41)
w.r.t. t,

d

dt
c̃AB(t) =

∫
dq

∫
dp [Kβ(Â)]W(q, p)

[
i

~
[Ĥ, B̂(t)]

]
W

(q, p)

(43)

where the commutator arises from noticing
d
dte

iĤt/~B̂e−iĤt/~ = (i/~)[Ĥ, eiĤt/~B̂e−iĤt/~]. The
evaluation of the Wigner transform of the commutator is
detailed in Ref. [41] and here we give the main steps.
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Using Eq. (17) we can write (dropping the prime on ∆′

for simplicity)

d

dt
[B(t)]W(q, p) =

i

~

∫
dp eip∆/~〈q −∆/2|

[
p̂2

2m
, B̂(t)

]
|q + ∆/2〉 (44a)

+
i

~

∫
dp eip∆/~〈q −∆/2|

[
V (q), B̂(t)

]
|q + ∆/2〉. (44b)

Using the definition p̂ = −i~ d
dq̂ , we can take the position

derivatives outisde the bra-kets, and using partial differenta-
tion show

∂2

∂(q −∆/2)2
− ∂2

∂(q + ∆/2)2
= −2

∂

∂q

∂

∂∆
(45)

and using integration by parts d
d∆ can be converted into

ip/~. Combining the above into Eq. (44a) gives

i

~

∫
dp eip∆/~〈q −∆/2|

[
p̂2

2m
, B̂(t)

]
|q + ∆/2〉

=
p

m

∂

∂q
[B̂(t)]W (46)

which is Newton’s first law. For the potential term in
Eq. (44b), we observe

V (q −∆/2)− V (q + ∆/2) = −2 sinh

(
∆

2

∂

∂q

)
. (47)

Combining this with ∆ being equivalent to −i~ d
dp acting on

the entire Wigner Transform we obtain

i

~

∫
dp eip∆/~〈q −∆/2|

[
V (q), B̂(t)

]
|q + ∆/2〉

= −2

~
V (q) sin

(
~
2

←−
∂

∂q

−→
∂

∂p

)
[B̂(t)]W (48)

where the arrows indicate in which direction the derivative
acts, and which is like Newton’s second law with higher-
order terms in ~, as can be seen from expanding the sine
series. Combining Eq. (46) and Eq. (48) we obtain

d

dt
[B̂(t)]W = LMoy[B̂(t)]W (49)

where LMoy is the Moyal series [41–43]

LMoy =
p

m

∂

∂q
− 2

~
V (q) sin

(
~
2

←−
∂

∂q

−→
∂

∂p

)
, (50)

which is referred to as a series since expanding the sine term
gives a series in powers of ~2. The correlation function is
therefore

c̃AB(t) =
1

2π~

∫
dq

∫
dp [Kβ(Â)]W(q, p)eLMoyt[B(0)]W(q, p).

(51)

In general, computing the action of the Moyal series upon an
obserable is as difficult as solving the Schrödinger equation
by conventional matrix-based methods, due to the presence
of the higher-order derivatives in Eq. (50), although there
have been some approaches to address this [44]. In the
following sections we therefore explore approximating the
Moyal series or generalization of it to obtain classical-like
dynamics.

3 LSC-IVR

Arguably the simplest way to approximate LMoy is to trun-
cate in powers of ~, giving

L0 =
p

m

∂

∂q
− ∂V (q)

∂q

∂

∂p
(52)

which corresponds to purely classical evolution of the phase-
space density from an initial quantum Boltzmann distribu-
tion, and has the appealing feature that the error from exact
quantum evolution LQ is known,

LQ =LMoy − L0

=
∑

ν=3, odd

(
i~
2

)ν−1
1

ν!

(←−
∂

∂q

−→
∂

∂p

)ν
(53)

which (by construction) only contains terms of O(~2) and
higher. Inserting Eq. (52) into the correlation function gives

c̃AB(t) '
∫
dp

∫
dq [Kβ(Â)]W(q, p)eL0t[B(t)]W(q, p)

≡
∫
dp

∫
dq [Kβ(Â)]W(q, p)[B̂(0)]W(qt, pt) (54)

where we have noted that, since L0 is classical, it corre-
sponds to inserting the time-evolved positions and momenta
into [B̂(0)]W. Although the Liouvillian has been truncated
in powers of ~, in general this does not mean that the time-
evolved observable has been truncated in ~, since the action
of ∂

∂p in the higher-order terms of LMoy upon the Wigner

transformed obervable ‘brings down’ powers of ~−1 [45].
The correlation function in Eq. (54) is known as the lin-

earized semiclassical initial value representation (LSC-IVR)
or the classical Wigner model, since it can be derived be
linearizing the difference in the action between forward-
backward trajectories in the semiclassical initial value repre-
sentation [46], and was later shown to be derivable from lin-
earizing the action of the exact quantum path-integral [47].
The method is exact in the high-temperature limit, for har-
monic systems (where the higher terms in the Moyal series
vanish without approximation) and as t → 0 [32, 46, 47].
LSC-IVR gives fairly good short-time dynamics, though can
miss interference effects in non-dissipative systems [6,48]. A
more serious shortcoming is that the classical dynamics does
not conserve the quantum Boltzmann distribution, leading
to zero-point energy flowing from high-frequency modes to
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translations and giving spurious effects in simulations [49];
an effect sometimes called ‘zero-point energy leakage’. Eval-
uating the Wigner-transformed Boltzmann distribution re-
quires a multidimensional Fourier transform which is often
approximated [6], and at low temperatures this distribution
can have negative values [50]. Nevertheless, it has success-
fully been applied to reaction rates [51], vibrational energy
relaxation and spectra [6, 49].

4 Matsubara dynamics

We have seen how to derive the exact quantum Liouvillian,
the Moyal series, and how its truncation to O(~0) leads to
classical trajectories, though does not conserve the distri-
bution. This motivates considering whether there are other
truncations which give classical trajectories (single deriva-
tives in the Liouvillian) but which also conserve the quan-
tum Boltzmann distribution. Here we show that by trun-
cating in the higher path-integral normal modes a classical,
Boltzmann preserving ‘Matsubara’ dynamics is produced.
Unfortunately it suffers from the sign problem so is not at
present a practical method, though we shall subsequently
show how its further approximation leads to the successful
approximate methods of CMD, RPMD and TRPMD.

The full derivation of Matsubara Dynamics is in Ref. [32];
here we outline the necessary steps for a one-dimensional
system where Â and B̂ are only functions of q; generaliza-
tion to more general operators being straightforward [32].
We also require Â and B̂ to be invariant w.r.t. cyclic per-
mutation of the beads {qi}, which is immediately satisfied
if Â and B̂ are linear as in Eq. (27), and is also the case
for more general nonlinear operators such as the dividing
surface in rate theory [28]. In order to use symmetry w.r.t.
imaginary time translation, we use the Generalized Kubo
Form in Eq. (26), insert identities and construct a multidi-
mensional Wigner transform as in Eq. (41), giving [32]

C
[N ]
AB(t) =

1

(2π~)N

∫
dq

∫
dp [e−βĤÂ]N̄ (p,q)[B̂(t)]N (p,q)

(55)

where N is the number of path-integral beads. The Wigner-
transformed Boltzmann distribution is given by

[e−βĤÂ]N̄ (p,q) =

∫
d∆ A(q)

N−1∏
i=0

eipi∆i/~

× 〈qi−1 −∆i−1/2|e−βN Ĥ |qi + ∆i/2〉
(56)

where the bar on [e−βĤÂ]N̄ denotes that the bra-kets link
together adjacent [(i−1)th and ith] beads and the real-time
evolution is

[B̂(t)]N (p,q) =

∫
d∆

∫
dz B(z)

N−1∏
i=0

eipi∆i/~

× 〈qi −∆i/2|eiĤt/~|zi〉〈zi|e−iĤt/~|qi + ∆i/2〉
(57)

where the bra-kets only concern a single bead. As all we
have done is insert identities, one could equivalently con-

struct Eq. (55) to have [e−βĤÂ]N (p,q) and [B̂(t)]N̄ (p,q).
However, since the time-evolution bra-kets only concern a
single bead, the Liouvillian for Eq. (55) is simply the sum
of the Liouvillian in Eq. (50) acting on each bead:

d

dt
[B̂(t)]N (p,q) = L[N ]

Moy[B̂(t)]N (p,q) (58)

where

L[N ]
Moy =

N−1∑
i=0

pi
m

∂

∂qi
− 2

~
V (qi) sin

(
~
2

←−
∂

∂qi

−→
∂

∂pi

)
. (59)

Truncating Eq. (59) to O(~2) gives LSC-IVR in the same
way as truncating LMoy in Eq. (52) [32].

Formally, one can write the exact correlation function in
Eq. (55) as

C
[N ]
AB(t) =

1

(2π~)N

∫
dq

∫
dp [e−βĤÂ]N̄ (p,q)eL

[N]
MoytB(q)

(60)

although this will generally be even harder to solve exactly
than Eq. (41). The benefit of ‘repackaging’ the correlation
function as in Eq. (60) is to exploit its symmetry properties

w.r.t. imaginary time. For example, [e−βĤÂ]N̄ (p,q) and
[B̂(t)]N (p,q) (as well as the Liouvillian in Eq. (59)) are in-
variant to cyclic permutation in imaginary time (changing
qi → qi+1), whereas this is not obvious with the conven-
tional Kubo-transformed correlation function in Eq. (41).
As we shall see later, invariance to translation in imaginary
time has a close relationship to the dynamics conserving the
quantum Boltzmann distribution.

Instead of writing the correlation function in terms of in-
dividual beads, we now consider writing in terms of path-
integral normal modes, transforming (q,p,∆)→ (Q,P,D)
where the normal modes are numbered −(N − 1)/2 ≤ j ≤
(N − 1)/2 as detailed in Appendix B2. In brief, the nor-
mal modes conventionally originate from diagonalizing the
ring-polymer Hamiltonian (see Eq. (153) and Ref. [52]) but
here help in evaluating the complex quantum Boltzmann

distribution in [e−βĤÂ]N̄ (p,q) and allow an intuitive un-
derstanding of the path integral. The lowest mode Q0 is (in
this definition) the centroid [53–55], the average position of
the beads, and P0 the associated momentum. Qualitatively,
the modes Q±1 describe the size or stretch of the ring poly-
mer [56], Q±2 its curvature and so on. Q0 can therefore be
considered the most ‘classical’ of the modes and the modes
are more ‘quantum’ with increasing |j|.

In normal modes the correlation function becomes [32]

C
[N ]
AB(t) =

(
N

2π~

)N ∫
dQ

∫
dP [e−βĤÂ]N̄ (P,Q)eL

[N]
MoytB(Q)

(61)

2Here we consider N and M to be odd for algebraic convenience,
even N and M leads to the same result [32].
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where the Liouvillian in normal modes is

L[N ]
Moy =

(N−1)/2∑
j=−(N−1)/2

Pj
m

∂

∂Qj

− 2N

~
U [N ](Q) sin

 ~
2N

(N−1)/2∑
j=−(N−1)/2

←−
∂

∂Qj

−→
∂

∂Pj


(62)

and the potential in normal modes is given by

U [N ](Q) =
1

N

N−1∑
i=0

V

 (N−1)/2∑
j=−(N−1)/2

√
NTijQj

 . (63)

If we were to truncate to O(~0) we would recover LSC-
IVR once again [32]. Instead, we make a different approxi-
mation, truncating from all N to the lowest M path-integral
normal modes. From an intuitive perspective, at zero time
the highest N −M modes cannot contribute to the (static)
correlation function as they are constrained to zero by the
quantum Boltzmann operator. One would expect them only
to affect the dynamics at longer times when they couple due
to anharmonicity in the potential (in a perfectly harmonic
potential, the dynamics is separable and the ring polymer
normal modes move independently). In the N → ∞ limit,
this truncation gives

L[M ] =

(M−1)/2∑
j=−(M−1)/2

Pj
m

∂

∂Qj

− 2N

~
U [N ](Q) sin

 ~
2N

(M−1)/2∑
j=−(M−1)/2

←−
∂

∂Qj

−→
∂

∂Pj


(64)

and we can therefore define an error Liouvillian [57]

Ler = L[N ]
Moy − L

[M ] (65)

which is given in full in appendix C.
How many of the lowest M modes should be included?

For any physical, analytic potential (one which is smooth,
continuous and continuously differentiable) there will be a
maximum frequency (second derivative), and provided the
frequency of the highest Matsubara mode (see below) is
greater than this, all statistical information will be correctly
captured (as modes j �M/2 will move adiabatically to the
potential).

For any M , the limit N/M →∞ is taken, and all higher
derivatives in Eq. (66) vanish without approximation, since
the lth derivative scales as (M/N)l−1. Consequently3

L[M ] =

(M−1)/2∑
j=−(M−1)/2

Pj
m

∂

∂Qj
− U [M ](Q)

(M−1)/2∑
j=−(M−1)/2

←−
∂

∂Qj

−→
∂

∂Pj

(66)

3Strictly speaking, the potential in Eq. (66) is U [N ](Q) and this
becomes U [M ](Q) after integrating out the non-Matsubara modes de-
tailed below.

and the single derivatives mean that the dynamics is classi-
cal, with a smoothed “Matsubara potential” U [M ](Q). [32]

Because the higher normal modes are not present in the
dynamics, nor in B(Q), the higher path-integral momenta
can be integrated out from the distribution4. This allows the
higher-frequency ‘stretch’ variables {Dj , |j| > (M − 1)/2}
to be integrated out from the distribution. In the N → ∞
limit the Boltzmann bra-kets can be evaluated analytically,
leading to the remaining M D variables being integrated
out by steepest descent. Finally, the higher normal modes
in Q (which are not affected by L[M ]) can be removed by
steepest descent. This leads to the classical-like Matsubara
correlation function [32]

C
[M ]
AB (t) =

αM
2π~

∫
dP

∫
dQ

× e−β[HM (P,Q)−iθM (P,Q)]A(Q)eL
[M]tB(Q) (67)

where the Matsubara Hamiltonian is

HM (P,Q) =

(M−1)/2∑
j=−(M−1)/2

P 2
j

2M
+ U [M ](Q). (68)

The phase factor is given by

θM (P,Q) =

(M−1)/2∑
j=−(M−1)/2

Pjω̃jQ−j (69)

where

ω̃j =
2πj

β~
(70)

are the Matsubara frequencies [58], after which the dynamics
is named [32]. Note that, in this definition, the frequencies
can be negative since ω̃−j = −ω̃j . α = ~1−M [(M − 1)/2]!2,
and the integrals are now implicitly M -dimensional as the
N −M non-Matsubara modes have been integrated out.

The truncation in normal modes is illustrated pictorially
in Fig. 2 and mathematically in Fig. 3.

Since the dynamics in L[M ] is equal to that generated by
HM (P,Q), i.e. L[M ] = {·, HM} where {·, ·} is the Pois-
son bracket, the dynamics will conserve HM (P,Q). To
show conservation of the phase factor one can either evalu-
ate L[M ]θM (P,Q) and show by trigonometric identities that
this vanishes, or use Noether’s theorem [32]. Using the lat-
ter method here, we note that the Hamiltonian and therefore
the Lagrangian

ΛM (P,Q) =

(M−1)/2∑
j=−(M−1)/2

P 2
j

2M
− U [M ](Q) (71)

is invariant w.r.t. translation in imaginary time. Using
straightforward differentiation and that d

dtQj = Pj/m,

d

dτ
ΛM =

d

dt

(M−1)/2∑
j=−(M−1)/2

(
Pj
dQj
dτ

)
= 0 (72)

4This also assumes that B̂ is not a function of the higher normal
modes in momenta.
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All modes:
'Jagged' path integral

Keep only
Matsubara 
modes

Smooth path integral

Figure 2: Top: inclusion of all path-integral modes leads to
a jagged path in imaginary time. Keeping only the lowest
Matsubara modes (bottom) leads to a smooth path Q(τ) in
imaginary time τ .

and by expanding
dQj

dτ in bead co-ordinates and applying
trigonometric identities we find

(M−1)/2∑
j=−(M−1)/2

(
Pj
dQj
dτ

)
=

(M−1)/2∑
j=−(M−1)/2

Pjω̃jQ−j (73)

meaning that

d

dt
θM (P,Q) = 0 (74)

and therefore L[M ]e−β[HM (P,Q)−iθM (P,Q)] = 0, such that the
Matsubara distribution is conserved by the Matsubara Li-

ouvillian, and C
[M ]
AB (t) obeys detailed balance.

Matsubara dynamics is therefore classical and conserves
the distribution, but the phase factor in the distribution
means that the correlation function is not amenable to com-
putation in large systems. However, for the model systems
for which it has been computed, it is more accurate than
LSC-IVR, CMD or RPMD [32, 57], and is exact for the
position-squared correlation function in a harmonic poten-
tial [59] which is not the case for RPMD or CMD [60].

5 Approximations to Matsubara
Dynamics

The accuracy of Matsubara dynamics and its intractable
nature in large systems suggests that approximations to it

Figure 3: Illustrating how the Matsubara modes ω̃j approx-
imate ring polymer modes ωj provided M � N .

which avoid the sign problem may prove more useful in prac-
tical applications. Obviously these approximate methods
will not in general be as accurate as Matsubara dynamics
and one must therefore choose the approximation carefully,
in order to remove the sign problem but also keep the dy-
namics real and preserve the quantum Boltzmann distribu-
tion.

In this article we explore three approximations to Mat-
subara dynamics which fulfil these criteria; a mean-field
approximation which yields centroid molecular dynamics
(CMD), and moving the momentum contour in the complex
distribution of Eq. (67), followed by approximating the re-
sulting complex dynamics deterministically, giving RPMD,
or stochastically, giving TRPMD. The full mathematics is
given in a series of recent articles [57, 59] and for simplicity
only the main details are given here.

5.1 Contour integration

For t = 0, one can perform contour integration in the com-
plex distribution in Eq. (67), defining

P̄j = Pj − imω̃jQ−j (75)

for all the normal modes. There is no phase factor associ-
ated with the centroid (ω̃0 = 0), and so the countour of the
centroid remains unchanged, which will become important
later. Using this transformation, for which the Jacobian is
unity, we obtain

C
[M ]
AB (t) =

αM
2π~

∫
dQ

 (M−1)/2∏
j=−(M−1)/2

∫ +∞−imω̃jQ−j

−∞−imω̃jQ−j

dP̄j


× e−βRM (P̃,Q)A(Q)eL

[M]tB(Q) (76)
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Figure 4: The contour integral in Eq. (76) in the real and
imaginary plane of P̄j , in the limit L → ∞. Matsubara
dynamics evaluates the contour I1, which is real in Pj but
complex in P̄j , and is the contour given in Eq. (76). This is
equivalent to −I3, the integral in Eq. (78), provided that I2
and I4 vanish and that the region enclosed by the contours
(shaded blue box, colour online) in holomorphic (free from
singularities). This can easily be shown to hold at t = 0,
giving Eq. (78). At finite time the shaded region is holomor-
phic for any analytic Hamiltonian [59], and I2 and I4 can be
shown to be zero in a large variety of limits [59], but their
evaluation for an arbitrary potential is challenging [62] and
here they are assumed to be zero.

where RM (P̃,Q) is the ring polymer Hamiltonian in Mat-
subara modes [57],

RM (P̃,Q) =

 (M−1)/2∑
j=−(M−1)/2

P̃ 2
j

2m
+

1

2
mω̃2

jQ
2
j

+ U [M ](Q).

(77)

In itself, Eq. (76) is an exact rewriting of Eq. (67), where
P̃ are presently complex. However, at zero time, we can
evaluate {P̃j} integrals along the real axis, noting that the
edges of the contour vanish, giving

C
[M ]
AB (0) =

αM
2π~

∫
dQ

∫
dP̃e−βRM (P̃,Q)A(Q)B(Q), (78)

The contour integral is illustrated pictorially in Fig. 4.
At finite time, moving the contour in {P̃j} leads to L[M ]

generating complex trajectories which are inherently unsta-
ble [61–64], i.e. we will have exchanged a complex distribu-
tion and real dynamics for a real distribution and complex
dynamics, and the problem will be equally (if not more)
intractable. However, we will see below that moving the
contour and discarding (or replacing) undesirable parts of
L[M ] can lead to tractable dynamics.

5.2 CMD

If the observables A(Q) and B(Q) are only functions of the
centroid Q0, we formally rewrite Eq. (67) as

C
[M ]
AB (t) =

αM
2π~

∫
dP0

∫
dQ0 A(Q0)

×
∫
dP′

∫
dQ′ e−β[HM (P,Q)−iθM (P,Q)]eL

[M]tB(Q0) (79)

where the primes denote integration over all modes except
P0 and Q0. We can then define the reduced centroid density

b(Q0, P0, t) =

∫
dP′

∫
dQ′e−β[HM (P,Q)−iθM (P,Q)]

× eL
[M]tB(Q0) (80)

and differentiation, followed by integration by parts gives

d

dt
b(Q0, P0, t) =

∫
dP′

∫
dQ′e−β[HM (P,Q)−iθM (P,Q)]

× L0e
L[M]tB(Q0) (81)

where the centroid motion alone is given by

L0 =
P0

m

∂

∂Q0
− ∂U [M ](Q)

∂Q0

∂

∂P0
(82)

and we have noted that (L[M ] − L0)θM (P,Q) = 0. At
present no approximation has been made and in general
direct evaluation of Eq. (81) would be just as difficult as
Eq. (67) as the force on the centroid in Eq. (82) requires
evaluting the dynamics of all the other normal modes. How-
ever, we can define a mean-field force by averaging over all
the non-centroid normal modes,

F0(Q0) =
−1

Z0

∫
dP′

∫
dQ′e−β[HM (P,Q)−iθM (P,Q)] ∂U

[M ](Q)

∂Q0

(83)

and then perform contour integration as in Eq. (76) to ob-
tain

F0(Q0) =
−1

Z0

∫
dP′

∫
dQ′e−βRM (P,Q) ∂U

[M ](Q)

∂Q0
(84)

where the normalization is

Z0 =

∫
dP′

∫
dQ′e−βRM (P,Q). (85)

We can then approximate the force on the centroid as

∂U [M ](Q)

∂Q0
= F0(Q0) + Ff(Q0) (86)

where Ff(Q0) is defined by Eq. (86), and by discarding
Ff(Q0) we obtain

d

dt
b(Q0, P0, t) '

[
P0

m

∂

∂Q0
+ F0(Q0)

∂

∂P0

]
b(Q0, P0, t) (87)

from which we can define a centroid-only Liouvillian

LC =
P0

m

∂

∂Q0
+ F0(Q0)

∂

∂P0
. (88)

and a formal solution

b(Q0, P0, t) = eLCtb(Q0, P0, 0). (89)
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We can now perform the contour integration inside
b(Q0, P0, 0) giving b(Q0, P0, 0) = Z0B(Q0) where Z0 is
the centroid-density distribution given in Eq. (85). Since
LCZ0 = 0, we can ‘leave’ the distribution at zero time and
only propagate B(Q0), giving an approximate correlation
function

C
[M ]
AB (t) 'αM

2π~

∫
dP0

∫
dQ0 A(Q0)Z0e

LCtB(Q0)

=CCMD
AB (t) (90)

which is CMD [3,47,57,65–69]. Consequently, CMD can be
obtained from exact quantum dynamics by discarding the
motion of the high-frequency modes to obtain Matsubara
dynamics, and then making the mean-field approximation
∂U [M](Q)
∂Q0

' F0(Q0), i.e. that the fluctuations around the
centroid are negligible. In some situations such as high tem-
peratures this is a reasonable approximation, but at low
temperatures where the ring polymer is highly delocalised
this can lead to the curvature problem [34] where spec-
tra are artificially broadened and red-shifted, and reaction
rates for asymmetric systems are overestimated since the
higher normal modes form part of the optimal dividing sur-
face [56]. Because the higher normal modes are integrated
out in CMD, it is inaccurate even at t = 0 for nonlinear
operators [60,70], though various techniques to address this
have been proposed [60,71].

Because LCZ0 = 0, CMD conserves the distribution func-
tion and obeys detailed balance.

In theory, there is no mathematical obligation to take the
mean field of all non-centroid modes, and one could aver-
age out over a subset, such as the most highly oscillatory
ones. While this would include some level of fluctuations,
the distribution of the non-centroid modes which were not
integrated out would still suffer from the sign problem.

5.3 RPMD

As noted in section 5.1, analytic continuation of the non-
centroid momenta is mathematically possible, and the inte-
grand can be proven to be holomorphic in that region of the
complex plane [59], meaning that there are no singularities
to worry about. The complex Liouvillian can be written as
its real and imaginary parts,

L[M ] = L[M ]
< + iL[M ]

= (91)

where

L[M ]
< =

(M−1)/2∑
j=−(M−1)/2

P̄j
m

∂

∂Qj
−
[
mω̃2

jQj +
∂U [M ](Q)

∂Qj

]
∂

∂P̄j

(92)

=L[M ]
RP (93)

is the ring polymer Liouvillian (using Matsubara frequen-
cies) and

L[M ]
= =

(M−1)/2∑
j=−(M−1)/2

ω̃j

(
P̄j

∂

∂P̄−j
−Qj

∂

∂Q−j

)
. (94)

One can show that both L[M ]
< and iL[M ]

= separately conserve

the distribution in Eq. (78), and so discarding iL[M ]
= leads

to a correlation function with a real distribution and a real
dynamics which conserves it,

CRP
AB(t) =

αM
2π~

∫
dQ

∫
dP̃e−βRM (P̄,Q)A(Q)eL

[M]
RP tB(Q)

(95)

which is RPMD [27, 57]. This means that the error in the
evolution between exact quantum dynamics and RPMD can
be stated in closed form as the error between exact quantum
dynamics and Matsubara dynamics [Eq. (154)], followed by

a contour integral and discarding L[M ]
= [Eq. (94)]5.

Since L[M ]
RP e

−βRM (P̄,Q) = 0, RPMD conserves the distri-
bution and CRP

AB(t) obeys detailed balance. Strictly speak-
ing, Eq. (95) is RPMD with Matsubara frequencies, but
in the M → ∞ and N/M → ∞ limits (implicitly taken
here), only the lowest Matsubara modes will participate in
the statistics and dynamics, the others being constrained
to zero by the spring terms in RM (P̄,Q), and correlation
functions employing Matsubara and ring polymer frequen-
cies will converge to the same result [57].

One unfortunate effect of discarding L[M ]
= is that it shifts

the frequencies of the non-centroid normal modes; in a har-
monic potential V (q) = 1

2mω
2
hq

2, they become [4]

ω̄j =
√
ω̃2
j + ω2

h. (96)

This leads to the so-called ‘spurious resonances’ problem in
spectra, where resonances between ring polymer frequen-
cies and physical frequencies (such as stretching vibrations)
lead to spurious extra spectra peaks which are temperature-
dependent [34,70,72,73].

5.4 TRPMD

To address the artificial shifting of frequencies upon discard-

ing iL[M ]
= , we consider replacing it with an operator which

will conserve the distribution but also provide the correct
oscillation frequency. The standard analysis of a damped
harmonic oscillator [2] shows that a friction term will re-
duce the oscillation frequency, so we consider defining [59]

A[M ]†
RP = L[M ]

RP +A[M ]†
wn (97)

5Strictly speaking, one also discards the vertical edges of the integral
contour, which are believed to be zero [59].
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where A[M ]†
wn is the adjoint of a white-noise Fokker-Planck

operator [1],

A[M ]†
wn = −P̄ · Γ · ∇P̄ +

m

β
∇P̄ · Γ · ∇P̄. (98)

The first term on the RHS of Eq. (98) corresponds to the
drag cause by the semidefinite friction matrix Γ (which we
assume is diagonal in what follows) and the second term
represents the ‘kicks’ imparted to the individual momenta
of stochastic trajectories [2]. Inserting Eq. (97) into the
analytically continued correlation function gives

CTRP
AB (t) =

αM
2π~

∫
dQ

∫
dP̃ e−βRM (P̄,Q)A(Q)eA

[M]†
RP tB(Q)

(99)

which is TRPMD [59, 70]. Similar to RPMD, the approx-
imation in the dynamics between exact quantum evolution
and TRPMD is therefore known, namely Ler followed by a

contour integral and replacing iL[M ]
= with A[M ]†

wn .
Using integrating by parts one can obtain the (non-

adjoint) of the Fokker-Planck operator in Eq. (98) as [1]

A[M ]
RP = −L[M ]

RP +∇P̄ · Γ · P̄ +
m

β
∇P̄ · Γ · ∇P̄ (100)

such that the Eq. (99) can be rewritten as

CTRP
AB (t) =

αM
2π~

∫
dQ

∫
dP̃ e−βRM (P̄,Q)A(Q)e

←−
A

[M]

RP tB(Q).

(101)

We can then show that A[M ]
RP e

−βRM (P̄,Q) = 0 such that the
stochastic dynamics of the system conserves the distribu-
tion. Showing that the correlation function obeys detailed

balance is more complicated (since A[M ]
RP contains double

derivatives) and this is detailed in Ref. [23].
Defining the friction matrix to be Γjk = 2|ω̃j |δjk leads

to the correct oscillation frequency of all ring polymer nor-
mal modes in a harmonic potential, and therefore give the
correct zero-time value and oscillation frequency for the har-
monic position-squared autocorrelation function [59], which
neither RPMD nor CMD can achieve [59, 60]. More impor-
tantly for spectra, a friction matrix of Γjk =

√
2|ω̃j |δjk will

lead all peaks in the position autocorrelation function for a
harmonic oscillator to be at the correct (external) frequency,
and therefore provides a unique value of Γjk for computation
of spectra which is between the values previously suggested
on the basis of optimal sampling [52,70].

Although TRPMD improves on both CMD and RPMD
for spectra [70], the friction causes unphysical slowing of
reaction rates beneath the crossover temperature [23].

5.5 Summary

The various approximations used to obtain LSC-IVR, CMD,
RPMD and TRPMD are illustrated schematically in Fig. 5

and their properties summarized in Table 1. For many sys-
tems with mild quantum effects some or all of these meth-
ods will produce similar results [74], and all are exact in the
high-temperature (classical) limit [6, 27, 68, 70], the t → 0
limit [6, 70, 75] and for the position autocorrelation func-
tion of a harmonic oscillator [6, 27, 57, 68, 70]. Although we
have shown that CMD can be obtained directly from Mat-
subara dynamics as a mean field approximation, it can also
be obtained as a mean field approximation to RPMD and
TRPMD using the same methodology, as shown for RPMD
in Ref. [76].

6 Quantum transition-state theory

Having considered time-correlation functions, we now con-
sider one of their principal applications: reaction rate cal-
culation, and how the foregoing mathematical ‘toolkit’ can
be used to obtain quantum transition-state theory.

6.1 Background

Here we provide a brief outline of the development of rate
theory to place the material discussed here in context; for a
fuller historical overview see Ref. [80].

The earliest widely-accepted rate formula is arguably the
Arrhenius equation

k = Ae−Ea/RT (102)

where A is the pre-exponential (frequency) factor and Ea
is the activation energy. Obtained empirically, there was
originally no clear prescription for determining A a priori.
In 1935 Eyring [81, 82] along with Evans and Polanyi [83]
proposed

k =

√
m

2πβ~2
K∗

1√
2πmβ

κ (103)

=
1

2πβ~
K∗κ (104)

where
√

m
2πβ~2K

∗ is the equilibrium constant between the

reactants and the activated complex (the thermal probabil-
ity of finding the system at the transition state), 1/

√
2πmβ

is the thermal flux and, to quote Eyring [82]

The transmission coefficient κ is just the ratio
of systems crossing the barrier to systems react-
ing. . . Fortunately, as stated for many reactions we
make a negligible error by taking it as unity.

Consequently, Eq. (104) (hereafter “Eyring TST”) is the
thermal flux multiplied by the probability of forming the
activated complex, or in modern terminology, the thermal
flux through the dividing surface, which gives the exact rate
if there is no recrossing. The partition functions involved are
calculated quantum mechanically, but the motion through
the transition state is assumed to be classical and separable
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Figure 5: Schematic flow diagram illustrating the various approximations from exact evolution to the methods described
in the article. MF = Mean field.

LSC-IVR CMD RPMD TRPMD

Approximation Discard O(~2) Mean field Discard iL[M ]
=

Replace iL[M ]
= with

A[M ]†
wn

Conserves distribution
and detailed balance?

No Yes Yes Yes

Centroid force N/A Mean field Matsubara force Matsubara force

Reaction rates
Problems beneath
Tc [50]

Inaccurate beneath
Tc [56, 77]

Good [4, 5]
Friction slows rates
[23]

Spectra Good [49]
Curvature problem
[34,72]

Spurious reso-
nances [34,72]

Good [70]

Diffusion ZPE leakage [49] Good [70,78] Good [49] Good [79]

Nonlinear operators
Good if ZPE not
problematic [6]

Fails even at t = 0
[60]

Breakdown from in-
correct frequencies
[60]

Breakdown from
damping [59]

Advised usage
Nonlinear opera-
tors

Rates above Tc, dif-
fusion

Rates, diffusion Spectra, diffusion

Table 1: Summary of the properties of LSC-IVR, CMD, RPMD and TRPMD. Tc is the crossover temperature discussed
in appendix D.
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from motion orthogonal to the dividing surface, which is not
always the case [84] and in some circumstances can lead to
considerable errors.

6.2 Classical rate theory

Determining the functional form of the transmission coeffi-
cient was placed on a firmer theoretical footing in the 1970s
by constructing a classical flux-side correlation function to
determine the classical rate [85,86],

kcl(β) = lim
t→∞

cfs(t)

Qr(β)
(105)

where (in one dimension for simplicity)

cfs(t) =
1

2π~

∫
dp

∫
dq e−βH(p,q)δ(q − q‡) p

m
h(qt − q‡).

(106)

This correlates the flux through q‡ at zero time, δ(q −
q‡)p/m, with whether the system is in the product region
at time t, h(qt − q‡). Here Qr(β) is the partition function
in the reactant region, δ(q − q‡) is a Dirac delta function
and h(qt − q‡) a heaviside function, similar to the quantum
case. For an F -dimensional system one defines a reaction
co-ordinate f(q) such that f(q) = 0 defines an (F − 1)-
dimensional dividing surface, f(q) > 0 is the product region
and f(q) < 0 is the reactant region.

Strictly speaking, the infinite-time limit in Eq. (105) is
only valid for gas-phase scattering. For condensed-phase
systems, in order to define a rate there must be sufficient
separation in timescales between reaction and equilibration
for plateau in cfs(t) to emerge, at which point the rate is
evaluated [85].

6.3 Classical TST

Here we show how the classical TST rate is related to the
short-time limit of Eq. (106) and therefore to the classi-
cal rate. In the process we obtain an algebraic expression
for the transmission coefficient. We firstly formally rewrite
Eq. (106) as

cfs(t) =
1

2π~

∫
dp

∫
dq e−βH(p,q)δ(q − q‡) p

m
eLth(q − q‡)

(107a)

=
1

2π~

∫
dp

∫
dq e−βH(p,q)δ(q − q‡) p

m
h[(eLtq)− q‡]

(107b)

where L is the classical Liouvillian given in Eq. (7), and we
have used the algebra in Section 2 to take eLt ‘inside’ the
heaviside function, since L only contains single derivatives
in p and q. Because the heaviside function is discontinuous,
one has to be careful expanding eLth(q − q‡) around t = 0,
and it is mathematically simpler to use Eq. (107b) rather
than Eq. (107a).

In the short-time limit,

lim
t→0+

h[(eLtq)− q‡] = lim
t→0+

h[q + pt/m+O(t2)− q‡] (108)

We then note that the Dirac delta function constrains q = q‡

and that the heaviside function is invariant to the scaling of
its argument, such that

lim
t→0+

δ(q − q‡)h[(eLtq)− q‡] = lim
t→0+

δ(q − q‡)h(pt/m)

=δ(q − q‡)h(p). (109)

Putting Eq. (109) back into Eq. (106) gives

lim
t→0+

cfs(t) =
1

2π~

∫
dp

∫
dq e−βH(p,q)δ(q − q‡) p

m
h(p)

(110a)

=
1

2π~

[∫
dp e−βp

2/2m p

m
h(p)

]
×
[∫

dq e−βV (q)δ(q − q‡)
]

(110b)

where the integrals in p and q have become separable. The
momentum integral is proportional to the thermal flux at
inverse temperature β, and the position integral is propor-
tional to the thermal probability of reaching the transition
state q‡. Comparing this with Eq. (104), we see that this
(suitably scaled by the partition function Qr(β)) is the clas-
sical transition-state theory rate,

k‡cl(β) =
1

Qr(β)
lim
t→0+

cfs(t). (111)

The transmission coefficient, which is the ratio of the clas-
sical TST rate to the exact classical rate, is therefore given
by

κ(t) =
cfs(t)

limt′→0+
cfs(t′)

(112)

where

kcl(β) = k‡cl(β)× lim
t→∞

κ(t) (113)

In practice, rates are often calculated using expressions such
as Eq. (113), known as the Bennett-Chandler factoriza-
tion [21], since this splits the calculation into a statistical

part k‡cl(β) for which there exists a huge repertoire of effi-
cient sampling techniques [21,24], and a dynamical part κ(t)
which can be obtained from a molecular dynamics simula-
tion.

From this we can also obtain a mathematical crite-
rion for recrossing. We firstly note that from Eq. (112),
limt→0+

κ(t) = 1, and obtain the time-derivative of κ(t) (c.f.
Eq. (35)),

d

dt
κ(t) =

cff(t)

limt′→0+ cfs(t
′)

(114)
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where the classical flux-flux correlation function is

cff(t) =

∫
dp

∫
dq e−βH(p,q)δ(q − q‡) p

m
δ(qt − q‡)

pt
m
.

(115)

This gives the flux of particles through the barrier at time
t, which also went past the barrier at time t = 0, i.e. the
extent of recrossing. If there is no recrossing then cff(t) = 0

for all t > 0+, κ(t) = 1 for all t ≥ 0, and kcl(β) = k‡cl(β)
which fulfils Eyring’s requirement for a TST.

We can therefore mathematically define classical TST as
a rate theory fulfilling two simple criteria:

1. k‡cl(β) = 1
Qr(β) limt→0+ cfs(t) such that

2. k‡cl(β) = kcl(β) if cff(t) = 0 for all t > 0+.

These criteria are not new and are essentially a mathemati-
cal summary of the generally-accepted definition of classical
transition-state theory [7, 21,85,87,88].

We now briefly note further properties of classical TST
which will be useful to compare to QTST. First, if the flux-
side time correlation function was defined with two dividing
surfaces in different places

cfs(t)2 =
1

2π~

∫
dp

∫
dq e−βH(p,q)δ(q − q‡1)

p

m
h(qt − q‡2)

(116)

where q‡1 6= q‡2 then

lim
t→0+

δ(q − q‡1)h(qt − q‡2) = lim
t→0+

δ(q − q‡1)h(q + pt/m− q‡2)

= lim
t→0+

δ(q − q‡)h(q − q‡2) (117)

such that

lim
t→0+

cfs(t)2 =
1

2π~

∫
dp e−βp

2/2m p

m

×
∫
dq e−βV (q)δ(q − q‡)h(q − q‡2)

=0 (118)

since the integral in momentum is odd. The existence of a
nonzero TST is therefore a consequence of the two dividing
surfaces being in the same place [28].

Second, the separability of the position and momentum
terms in the classical TST expression Eq. (110b) means that
momentum can be integrated out which (along with evalu-
ating the partition function for a scattering system) gives

k‡cl(β) =
1√

2πβm

∫
dq e−βV (q)δ(q − q‡) (119)

showing that classical TST does not require the simultane-
ous specification of position and momentum, even though
this is allowed in classical mechanics.

Third, classical rate theory is independent of the loca-
tion of the dividing surface [36, 38], which can be shown

algebraically by differentiating cfs(t) w.r.t. q‡, rearranging,
and showing that this corresponds to the system travers-
ing the barrier at time t having starting at the barrier at
t = 0, which cannot be the case at long times if there is a
plateau in cfs(t) and the rate is defined. However, classical
TST is exponentially sensitive to the dividing surface. Since
recrossing only reduces the rate (by the heaviside function
discarding trajectories with positive momentum, or includ-
ing trajectories with initially negative momentum), classical
TST is an upper bound to the classical rate. This property
can be used to variationally optimize the location of the di-
viding surface in multidimensional systems [87], since in an
F -dimensional system the dividing surface is an (F − 1)-
dimensional hypersurface, and locating the position of the
optimal dividing surface [the one which minimises k‡cl(β) and
maximises κ(t)] is difficult.

In summary, classical transition-state theory is the instan-
taneous thermal classical flux through a position-space di-
viding surface, which is equal to the exact (classical) rate
in the absence of recrossing (cff(t > 0) = 0) by the classi-
cal dynamics of the system. It also implicitly assumes that
the reactants are in thermal equilibrium (and in equilibrium
with the transition state) and that the reaction is electron-
ically adiabatic, proceeding on a single Born-Oppenheimer
potential energy surface. [7] The advantages of classical TST
over full classical rate calculation is computational simplic-
ity, only requiring knowledge of the PES at the dividing
surface and no dynamics, and that it is generally easy to
tell in advance if TST will provide a good approximation to
the rate. TST works for direct reactions where there is a
significant thermal barrier between reactants and products
(significantly greater than kBT ); although it is only exact in
a small number of cases (such as one dimensional systems
with the optimal dividing surface), recrossing of the opti-
mal dividing surface is often small and it is therefore a good
approximation, and upper bound, to the rate. [7, 80] It is
not expected to work where reactions are diffusive (involv-
ing multiple recrossings and therefore a low transmission
coefficient), systems with long-lived intermediates (where
defining a dividing surface is problematic) or systems with
pronounced quantum effects.

6.4 Quantum TST

While very successful for heavy atoms at high temperatures,
classical TST does not include any quantum mechanical ef-
fects such as tunnelling and zero-point energy, which can
lead to significant (many orders of magnitude) deviation
between the classical result and the experimental or the
quantum result, particularly at low temperatures (see e.g.
Ref. [89]). One can, of course, try to include quantum ef-
fects into classical TST [7], such as in the standard Wigner-
Eyring model where partition functions in modes orthogonal
to the reaction co-ordinate are evaluated quantum mechani-
cally, but motion through the saddle point is assumed to be
classical and separable to motion orthogonal to it, which is
frequently not the case [84].
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There is considerable historical debate on the existence
of quantum transition-state theory, for which the reader is
referred to (for example) Refs. [36, 55, 90–95]. In short, in
the late 1930s Wigner and others considered incorporating
quantum effects such as tunnelling into transition-state the-
ory, and noted that there were difficulties due to (a) the
non-locality of the quantum Boltzmann operator and (b)
the uncertainty principle.

The non-locality of the quantum Boltzmann operator
means that the dividing surface must act on a point or points

of the imaginary time trajectory embodied in e−βĤ . The de-
velopment of path-integral techniques by Feynmann [96] and
many others means that the dividing surface can be written
as a function of path-integral space, f(q), taking the posi-
tions of path-integral beads q1, q2, . . . , qN as its argument,
such that f(q) = 0 at the dividing surface. To define a rig-
orous QTST where the only assumption is no recrossing [93]
we therefore have to consider recrossing of the path-integral
dividing surface f(q), and recrossing of any surfaces orthog-
onal to it in path-integral space, which we denote g(q) [29]6.

Concerning the uncertainty principle, specifying the di-
viding surface in path-integral space allows for a delocalised
imaginary-time trajectory and therefore uncertainty in the
individual bead positions. We also note that there is no
requirement for simultaneous specification of position and
momentum in classical TST (see above) and there is no a
priori reason why this should be required in the quantum
case either.

Extending the definition of classical TST to the quan-
tum case, quantum transition-state theory is therefore de-
fined as the instantaneous thermal flux through a position-
dependent dividing surface which gives the exact quantum
rate in the absence of recrossing, both of the dividing sur-
face and of the surfaces orthogonal to it in path-integral
space [28–31, 97]. Mathematically, we denote Cfs(t) to de-
note a flux-side function correlating flux through f(q) at
t = 0 with time-evolved side through f(q) (similarly for
Cff(t)) and Mfs(t) for a flux-side function correlating flux
through f(q) with time-evolved side through g(q) [29]. The
criteria for QTST given algebraically are therefore

1. k‡Q(β) = limt→0+ Cfs(t)/Qr(β) such that

2. k‡Q(β) = kQ(β) if Cff(t) = 0 and Mff(t) = 0 for all
t > 0+ and all g(q).

We stress that the dynamics in these quantum correlation

functions is the exact quantum dynamics (e−iĤt/~) and not
any of the approximate quantum methods discussed above.

The historical difficulties of formulating a rigorous QTST
(satisfying both of the above criteria) led to the development
of a huge range of heuristic quantum mechanical rate the-
ories that used transition-state arguments [36,53–55,98,99]
in addition to alternative approaches such as instanton the-
ory [56, 100, 101], quantum instanton methods [102] and

6Orthogonality formally means than f(q)
←−
∇ ·
−→
∇g(q) = 0 where

∇g(q) is the gradient of g(q) [29].

many others discussed elsewhere [8,9]. There have also been
other, generally broader, definitions of QTST in (for ex-
ample) Refs. [8, 103]. The definition of QTST used in this
article is based on Eyring’s original definition of TST and
means that one has a priori knowledge of its applicability:
provided there is minimal recrossing QTST will be a good
approximation to the rate.

6.4.1 Wigner-Miller TST

Having defined QTST we show how to derive a simple ex-
pression satisfying the criteria for a QTST, but which is un-
reliable at low temperatures. In the followed sections we will
extend this to obtain an expression which has positive defi-
nite Boltzmann statistics, i.e. is guaranteed to be positive at
any finite temperature. The original QTST derivation eval-
uated time-evolution bra-kets algebraically [28]; here we red-
erive these expressions in the Moyal series formalism, which
is arguably simpler.

As in classical mechanics, the key ingredient in formulat-
ing a QTST is ensuring that the two dividing surfaces are
located in the same place in path-integral space, such that
they coalesce in the t→ 0+ limit. This has to be done care-
fully, since the quantum Boltzmann operators is nonlocal,
unlike the classical Boltzmann operator. We start with the
Wigner-transformed side-side correlation function

C [1]
ss (t) =

1

2π~

∫
dq

∫
dp [e−βĤ ]W (p, q)

× h(q − q‡)eLMoyth(q − q‡) (120)

at t = 0, the dividing surfaces in Eq. (120) are clearly the
function of the same co-ordinate and in the same place (they
are not separated by an imaginary-time trajectory). We
obtain the flux-side correlation function as

C
[1]
fs (t) =− d

dt
C [1]

ss (t)

=
1

2π~

∫
dq

∫
dp [e−βĤ ]W (p, q)

× [LMoyh(q − q‡)]eLMoyth(q − q‡)

=
1

2π~

∫
dq

∫
dp [e−βĤ ]W (p, q)

× p

m
δ(q − q‡)eLMoyth(q − q‡) (121)

where we have noted that the adjoint of the Liouvillian is

its negative [104], and that LMoy[e−βĤ ]W (p, q) = 0 since
exact quantum dynamics conserves the quantum Boltzmann
distribution. We illustrate Eq. (121) schematically in Fig. 6.

Expanding eLMoyt in a Taylor series to find the t → 0+

limit is mathematically problematic since h(q−q‡) is discon-
tinuous around q = q‡, as for the classical case. However,
we can instead write

lim
t→0+

eLMoyt = lim
t→0+

eLQteL0t (122)
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Figure 6: Schematic path-integral diagram of Eq. (121) with
the imaginary time path shown as a curved line, the real time
path with a wavy line and the flux and side operators as blue
and red circles respectively. Placing the flux operator at the
average of the forward and backward real-time paths (left)
leads to the flux and side dividing surfaces being in the same
place in path-integral space in the t→ 0+ limit (right).

where L0 is the classical Liouvillian is defined in Eq. (52) and
LQ defined in Eq. (53) contains the higher-order quantum
terms. Because L0 only contains single derivatives we can
use the maths as for the classical case to show

lim
t→0+

eLQteL0th(q − q‡) = lim
t→0+

eLQth(q + pt/m− q‡)

= lim
t→0+

[1 +O(t)]h(q + pt/m− q‡)

= lim
t→0+

h(q + pt/m− q‡) (123)

and therefore

lim
t→0+

δ(q − q‡)eLMoyth(q − q‡) = δ(q − q‡)h(p). (124)

Inserting Eq. (124) into Eq. (120) immediately gives

C
[1]
fs (t) =

1

2π~

∫
dq

∫
dp [e−βĤ ]W (p, q)

p

m
δ(q − q‡)h(p).

(125)

This is identical to a rate expression introduced heuristically
by Wigner in 1932 [99] and was subsequently reintroduced
and developed for the description of quantum mechanical
reaction rates [50,105].

The proof that this gives the exact rate in the absence of
recrossing is given in [30], fulfilling the second criterion for a
QTST. In brief, since the dividing surface acts only on one
point in path-integral space (the average of the end-points
of the imaginary time path, see Fig. 6), there are no orthog-
onal surfaces whose recrossing need be considered. Conse-
quently, as the first criterion for QTST is satisfied, one can
combine this with Eq. (35) to rewrite the second criterion as

limt→∞ C
[1]
fs (t)/Qr(β) = kQ(β). This is then proven by eval-

uating both sides of the equation using quantum scattering
theory [30,36,106] where the RHS is given by Eq. (32).

While providing a reasonable description at relatively high
temperatures, beneath the ‘crossover temperature’ into deep
tunnelling (see appendix D) the thermal Wigner distribution
becomes non-positive definite, such that Eq. (125) can pro-
duce spurious negative rates. [28, 50] This is because only
the average of the forward and backward imaginary time
paths are constrained to be at the barrier, and the resulting

path-integral ‘string’ will sag over the barrier at low tem-
peratures [28,50].

6.4.2 Positive-definite statistics

To ensure that the rate is positive at any finite temperature,
the Generalized Kubo correlation function can be used. The
full derivation is given in Refs. [28,29] and here we sketch the
pertinent details. A key part of this is defining a dividing
surface in path-integral space f(q) which must separate the
products and reactants, converge with N and (in order to
maximise the free energy) a permutationally-invariant func-
tion of the path-integral beads [28]. In the terminology of
Matsubara dynamics, this means that it must be composed
of a finite number of K Matsubara modes. [97]

We start with the Kubo-transformed side-side correlation
function

C [N ]
ss (t) =

1

(2π~)N

∫
dp

∫
dq [e−βĤ ]N̄ (p,q)

× h[f(q)]eL
[N]
Moyth[f(q)] (126)

We then transform the correlation function to path-integral
normal modes, without truncating the non-Matsubara
modes:

C [N ]
ss (t) =

(
N

2π~

)N ∫
dP

∫
dQ [e−βĤ ]N̄ (P,Q)

× h[f(Q)]eL
[N]
Moyth[f(Q)] (127)

As before, we differentiate w.r.t. t to obtain the flux-side
correlation function

C
[N ]
fs (t) =

(
N

2π~

)N ∫
dP

∫
dQ [e−βĤ ]N̄ (P,Q)

× δ[f(Q)]S(P,Q)eL
[N]
Moyth[f(Q)] (128)

where S(P,Q) is the ring-polymer flux

S(P,Q) =
1

m

(K−1)/2∑
j=−(K−1)/2

∂f(Q)

∂Qj
Pj (129)

that is only a function of the lowest K normal modes. Equa-
tion (128) and its short-time limit is given schematically in
Fig. 7.

In the short-time limit we can separate the propagator

lim
t→0+

eL
[N]
Moyt = eLerteL

[M]t (130)

where L[M ] is given in Eq. (66) and Ler = L[N ]
Moy − L[M ],

given in appendix C. For this derivation, we can choose any
M ≥ K. Using similar algebra to the classical and Wigner-
Miller TST cases, we then show

lim
t→0+

eL
[N]
Moyth[f(Q)] = lim

t→0+

h[f(Q) + S(P,Q)t] (131)
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Figure 7: Schematic diagram of the Generalized Kubo cor-
relation function in Eq. (128) for the case of N = 3,
with a generalized dividing surface f(q) and F [f(q)] =
δ[f(Q)]S(P,Q) is the flux through f(q) at t = 0. In the
t → 0+ limit (and for N → ∞), the ‘stretches’ in the ring
polymer can be integrated out leading to the ring-polymer
flux, shown on the right.

where we have Taylor-expanded f(Q) and noted that
Lerh[f(Q) + S(P,Q)t] = 0 since h[f(Q) + S(P,Q)t] only
contains Matsubara modes and all terms in Ler contain
derivatives of non-Matsubara modes. This gives

lim
t→0+

δ[f(Q)]eL
[N]
Moyth[f(Q)] = δ[f(Q)]h[S(P,Q)] (132)

and inserting Eq. (132) into Eq. (128) we obtain

lim
t→0+

C
[N ]
fs (t) =

(
N

2π~

)N ∫
dP

∫
dQ [e−βĤ ]N̄ (P,Q)

× δ[f(Q)]S(P,Q)h[S(P,Q)], (133)

which is a nonzero t → 0+ quantum transition-state the-
ory by the first criterion, from which we define k‡Q(β) =

limt→0+ C
[N ]
fs (t)/Qr(β).

To evaluate Eq. (133) we can, without approximation,
integrate out the non-Matsubara P, followed by D inside

[e−βĤ ]N̄ (P,Q) and the non-Matsubara Q (which by con-
struction are not required to evaluate the distribution) to
give

lim
t→0+

C
[N ]
fs (t) =

(
N

2π~

)N ∫ ′
dP

∫ ′
dQ e−β[HM (P,Q)−iθM (P,Q)]

× δ[f(Q)]S(P,Q)h[S(P,Q)]. (134)

This expression is identical to the short-time limit of the
Matsubara flux-side time-correlation function, or ‘Matsub-
ara transition-state theory’ (M-TST).

To address the phase factor, we then move the contour
in P to generate a ring polymer potential. If the dividing

surface contains non-centroid modes we obtain

S(P̄,Q) =
1

m

(K−1)/2∑
j=−(K−1)/2

∂f(Q)

∂Qj
(P̄j + imω̃jQ−j) (135)

which appears complex, but the imaginary part corresponds
to the change in dividing surface with imaginary time τ ,
which is zero by construction:

i

(K−1)/2∑
j=−(K−1)/2

ω̃jQ−j
∂f(Q)

∂Qj
=− i

(K−1)/2∑
j=−(K−1)/2

dQj
dτ

∂f(Q)

∂Qj

=− idf(Q)

dτ
= 0 (136)

where we have used ω̃jQ−j = −dQj

dτ from Ref. [32]. This
leads immediately to

lim
t→0+

C
[N ]
fs (t) =

(
N

2π~

)N ∫ ′
dP̄

∫ ′
dQ e−βRM (P̄,Q)

× δ[f(Q)]S(P̄,Q)h[S(P̄,Q)] (137)

which is RPMD-TST with Matsubara frequencies. As for
other static and dynamical properties, this is formally iden-
tical to RPMD-TST with ring-polymer frequencies in the
large M , N →∞ limit considered here. [32]

We have therefore shown that limt→0+
C

[N ]
fs (t)/Qr(β) is

nonzero giving a QTST by the first criterion. To show
that it fulfils the second criterion, we apply Eq. (35) to
the second criterion, and note that limt→0+ Mfs(t) = 0
since the dividing surfaces are in different locations in path-
integral space. It then becomes sufficient to prove that

limt→∞ C
[N ]
fs (t)/Qr(β) = kQ(β) when limt→∞Mfs(t) = 0.

The mathematics is given in Ref. [29], and in brief the long-
time limits are evaluated using quantum scattering theory
and we then show that if limt→∞Mfs(t) = 0 for all g(q)

orthogonal to f(q) then limt→∞ C
[N ]
fs (t) is equivalent to the

long-time limit of cfs(t) in Eq. (33) which by Eq. (32) fulfils
the second criterion.

In theory, it is possible to systematically improve QTST
to the exact quantum result by computing the recrossing

in C
[N ]
fs (t) and Mfs(t) [29, 31], but in practice this is more

expensive than a conventional quantum calculation.

6.4.3 Summary

We have rederived RPMD-TST and M-TST from a quantum
flux-side time-correlation function using the Liouvillian for-
malism, finding that both are true quantum transition-state
theories. Interestingly, for Matsubara TST to be equivalent
to QTST only requires that the dividing surface is a func-
tion of a finite number of Matsubara modes, but showing
the equivalence to RPMD-TST requires the extra condition
that the dividing surface is invariant to cyclic permutation.

We also observe that, when the centroid dividing sur-
face is used, RPMD-TST reduces to the earlier centroid-
TST [28, 53–55]. In fact, a recent article claimed to have
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derived QTST and found that this was equal to Centroid-
TST and not RPMD-TST [107], and which was shown to be
an artifact of Ref. [107] only considering a centroid dividing
surface [97].

In practice, locating the optimal dividing surface f(q) is
complicated and, particularly at low temperatures, may take
on a complicated curvilinear form [56]. Because RPMD rate
theory is independent of the location of the dividing surface
[38], the RPMD rate will be equal to the exact quantum
rate is there is no recrossing of the optimal dividing surface
(the one which minimises k‡QM) or those orthogonal to it in
path-integral space by either the exact quantum dynamics
or the RPMD dynamics of the system. As for classical TST,
in general there will be some recrossing, and consequently
RPMD is expected to be a good approximation to the rate.

RPMD rate theory itself has seen a huge range of applica-
tions, many of which are discussed in Refs. [4,5]. To mention
a few, after initial application to model systems [38, 88] it
was applied to proton transfer [108], bimolecular reaction
rates [109,110] and diffusion in ice and clathrates [111,112].
QTST has also been applied to improve standard tunnelling
corrections [113].

Whereas classical TST is an upper bound to the classical
rate, QTST is not a strict upper bound to the quantum
rate [28]. However, in general QTST is a good approximation
to an upper bound provided that there are not significant
coherences in the reaction dynamics [28].

7 Future directions

Having surveyed how CMD, RPMD and TRPMD can be
considered as approximations to Matsubara dynamics, we
briefly consider areas for further development of the field.

7.1 Nonadiabatic systems

For small or model systems, exact methods can be applied
such as MCTDH [114], and the past few decades have seen
considerably development of approximate methods. There
exist a wide variety of methods to model non-adiabatic
processes using classical-like trajectories, including surface-
hopping [115–117], various linearized methods [118], and
mixed quantum-classical [119–121] methods. A common
and successful method to map discrete electronic states to
continuous classical variables is to use ‘mapping variables’,
where singly excited oscillator states are inserted and elec-
tronic states represented by their fictitious positions and mo-
menta [122–125]. There are, of course, many other possible
mappings [125] but the simplicity and ease of implemen-
tation of mapping variables appears to have led to their
widespread application to semiclassical [126,127], quasiclas-
sical [128], (partially) linearized [18, 129–135], and path in-
tegral dynamics [136–138]. Although the propagator (Moyal
series) for a single surface systems was obtained in 1949 [43],
the analogue of this in mapping variables was not derived
until 2016 [104].

Despite this progress there remains, to the author’s knowl-
edge, no method which has classical-like scaling in all de-
grees of freedom, conserves the quantum Boltzmann distri-
bution and reproduces Rabi oscillations, though there are a
number of methods which incorporate some of these desir-
able properties [139]. There is also, at present, no widely-
accepted ‘true’ (t→ 0+) non-adiabatic quantum transition-
state theory with a dividing surface in electronic space—
though this does not mean that one does not exist. For a
non-adiabatic system with a dividing surface solely in posi-
tion space, QTST is simply RPMD-TST with a mean-field
non-adiabatic potential [31], which means that mean-field
non-adiabatic RPMD [140,141] will provide a good approx-
imation to the exact quantum rate when there is minimal
recrossing of the position-space dividing surface by either
the (mean field) ring polymer dynamics or the exact quan-
tum dynamics. While this appears to be true for some model
systems with large non-adiabatic coupling [140], this is un-
likely to hold in regimes of small coupling [141]. Even within
existing methods, such as non-adiabatic RPMD, there are a
variety of implementations [136, 137, 140–142] and it is not
always clear which one will be superior in any given situa-
tion.

7.2 Theoretical development

There may also be the possibility of applying Matsubara
dynamics (or a similar approximate quantum dynamics) to
the computation of nonlinear response functions [143] which
can diverge in a purely classical calculation [144]. There
may also be other classical-like approximations to quantum
dynamics (and maybe Matsubara dynamics) that for some
systems are more accurate [145]. Very recent research has
obtained out-of-equilibrium RPMD and CMD from Matsub-
ara dynamics [20], which should be useful tools for excited
state quantum dynamics.

7.3 Computational development

For a method to bridge the gap between theoretical devel-
opment and routine application in large chemical systems,
the speed of computation needs to be comparable to that of
a standard classical molecular dynamics simulation. There
have consequently been a large range of methods developed
to implement the approximate methods described here ac-
curately and efficiently.

For single-surface systems, there have been impressive ap-
plications including a study of dynamics and dissipation
in enzyme catalysis [146] and proton transport in water
nanowires [79], though applications to large systems are of-
ten limited by the cost of the potential. Various techniques
have evolved to address this, including ring polymer con-
traction [111,147,148] and thermostatting [52,59,70].

Open source codes such as i-Pi [149] and RPMDrate [150]
have been developed to facilitate application to wide-ranging
systems.

19



8 Conclusions

In this New View we have reviewed how a number of
successful approximate quantum dynamics methods can
be obtained from exact quantum time evolution and used
the Liouvillian and Moyal formalisms to rederive quantum
transition-state theory.

We have mainly considered the mathematical basis for
these theories and shown what terms they discard from the
exact quantum evolution to obtain a classical-like dynamics
from which to compute a correlation function. Provided the
discarded error terms are small, the approximate correlation
function will be a good approximation to the exact quantum
correlation function. By considering cases where this is (and
is not) the case, we can propose a priori situations where
a particular methods is likely to work, and therefore advise
the usage of approximate methods, summarized in Table 1.

We then revisit classical and quantum transition-state
theory and derive QTST in the Matsubara formalism, show-
ing that Matsubara-TST is a true QTST. Provided the
dividing surface is permutationally invariant, RPMD-TST
is equivalent to Matsubara-TST, unlike the dynamics in
RPMD which is only an approximation to Matsubara dy-
namics. While of limited computational importance by it-
self (due to the phase factor in the Matsubara distribution)
this may facilitate the derivation of other (possibly more
accurate) rate theories.

While there has been much progress in recent years, there
remain many avenues for further theoretical development.
There is arguably no clear consensus on how to apply ap-
proximate path-integral methods to non-adiabatic systems,
nor a t → 0+ non-adiabatic QTST, the existence of which
is an open question. There is also scope for applying the
approximate methods discussed here to out-of-equilibrium
systems and nonlinear response functions, in addition to de-
veloping efficient computational algorithms for implement-
ing these methods in code libraries and for large systems.
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A Ring Polymers

There exists a vast literature on ring polymers [96,151] and
here we give the standard derivation of the expression for a
partition function [24] for the benefit of those unfamiliar or
new to the subject.

For a quantum mechanical partition function

Z = Tr[e−βĤ ] (138)

we can perform the Trotter discretization

Z = Tr[(e−βN Ĥ)N ] (139)

and in the N →∞ limit, expand e−βN Ĥ symmetrically as

Z = lim
N→∞

Tr[(e−βN V̂ /2e−βN T̂ e−βN V̂ /2)N ] (140)

where V̂ = V (q̂) and T̂ = p̂2/2m. We then insert N sets of
position identities,

∫
dqi|qi〉〈qi|, i = 1, . . . , N ,

Z = lim
N→∞

∫
dq

N∏
i=1

〈qi−1|e−βN V̂ /2e−βN T̂ e−βN V̂ /2|qi〉

(141a)

= lim
N→∞

∫
dq

N∏
i=1

〈qi−1|e−βN T̂ |qi〉e−βNV (qi) (141b)

where we have noted e−βN V̂ /2|qi〉 = |qi〉e−βNV (qi)/2 and
cyclic permutation within indices to go from Eq. (141a) to
Eq. (141b). By inserting momentum eigenstates, we then
evaluate

〈qi−1|e−βN T̂ |qi〉 =

∫
dpi〈qi−1|pi〉e−βNp

2
i /2m〈pi|qi〉

=
1

2π~

∫
dpie

ipi(qi−1−qi)/~e−βNp
2
i /2m

=

√
m

2πβN~2
e−m(qi−qi−1)2/2βN~2

(142)

by contour integration, and by inserting Eq. (142) into
Eq. (141b) obtain

Z = lim
N→∞

(
m

2πβN~2

)N/2 ∫
dq e−βNUN (q) (143)

where the ring polymer potential is

UN (q) =

N∑
i=1

V (qi) +
m(qi − qi−1)2

2β2
N~2

(144)

One can re-insert N momentum identities [152]

1 =

√
βN

2πm

∫
dp eβNp

2/2m (145)

in pi, i = 1, . . . , N to give

Z = lim
N→∞

1

(2π~)N

∫
dq

∫
dp eβNRN (p,q) (146)

where the ring polymer Hamiltonian is

RN (p,q) =

N∑
i=1

p2
i

2m
+ V (qi) +

m(qi − qi−1)2

2β2
N~2

. (147)

The above derivation is exact for static properties and the
dynamics generated by Eq. (147) was originally proposed
as a sampling tool [152]. The {qi} are known as ring poly-
mer ‘beads’ and in practice their number N is treated as a
convergence parameter in a numerical simulation.
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B Normal modes

The ring-polymer normal modes are defined here as in
Ref. [57],

Qj =

N−1∑
i=0

Tij√
N
qi (148)

where j = −N/2 + 1, . . . , 0, . . . , N/2 and likewise for P,
where

Tij =


N−1/2 j = 0√

2/N sin(2πij/N) 1 ≤ j ≤ N/2− 1
N−1/2(−1)i j = N/2√

2/N cos(2πij/N) −N/2 + 1 ≤ j ≤ −1

(149)

where the j = N/2 mode is omitted if N is odd. The trans-
formation is not unitary, but defined such that the normal
modes converge in the N →∞ limit. This leads to frequen-
cies in the complex Boltzmann distribution of

ωj =
2 sin(jπ/N)

βN~
(150)

which, for large N and finite j, become the Matsubara fre-
quencies [58]

ω̃j = lim
N→∞

ωj =
2πj

β~
. (151)

The observables A(Q) and B(Q) are obtained by making by
substituting

qi =

(M−1)/2∑
j=−(M−1)/2

Tij
√
NQj (152)

into A(q) and B(q) respectively, which also leads to a ‘Mat-
subara potential’ in Eq. (63). This transformation also di-
agonalizes the spring part of the ring polymer Hamiltonian
in Eq. (147),

N∑
i=1

m(qi − qi−1)2

2β2
N~2

=
Nm

2
ω2
jQ

2
j . (153)

C Matsubara error Liouvillian

By exploiting trigonometric identities, Eq. (65) can be given
as [32]

Ler =

(N−1)/2∑
j=(M+1)/2

Pj
m

∂

∂Qj
+
P−j
m

∂

∂Q−j

− 4

~
U [N ](Q) sin

(
X̂

2

)
cos

(
X̂

2
+ Ŷ

)
(154)

where X̂ acts only on the non-Matsubara modes

X̂ =
~
2

(N−1)/2∑
j=(M+1)/2

←−
∂

∂Qj

−→
∂

∂Pj
+

←−
∂

∂Q−j

−→
∂

∂P−j
(155)

and Ŷ acts on the Matsubara modes

Ŷ =
~
2

(M−1)/2∑
j=−(M−1)/2

←−
∂

∂Qj

−→
∂

∂Pj
. (156)

Although Ler contains both Matsubara and non-Matsubara
derivatives, expanding the trigonometric functions in
Eq. (154) shows that all terms in Ler contain at least one
derivative in a non-Matsubara mode.

D Crossover temperature

A rough guide for the temperature beneath which quan-
tum effects become pronounced is the crossover temperature
where the first ring polymer normal mode becomes unstable,
defined as [56]

Tc =
~ωb

2πkB
(157)

where ωb is the imaginary frequency at the top of the barrier.
Since at the maximum dV (q)/dq = 0 by construction, the
potential can be expanded as V (q−q‡) ' V (q‡)−mω2

bq
2/2+

O(q3), and ωb therefore provides a guide concerning how
‘peaked’ the barrier is, as sketched in Fig. 8.

Figure 8: Schematic diagram showing the imaginary mode
at the top of the barrier, which would be a saddle point on
a multidimensional potential energy surface.
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