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In a previous article [T. J. H. Hele and S. C. Althorpe, J. Chem. Phys. 138, 084108 (2013)], we
showed that the ¢ — 0, limit of ring-polymer molecular dynamics (RPMD) rate-theory is also the
t — 0, limit of a new type of quantum flux-side time-correlation function, in which the dividing
surfaces are invariant to imaginary-time translation; in other words, that RPMD transition-state
theory (RMPD-TST) is a t — 0, quantum transition-state theory (QTST). Recently, Jang and Voth
[J. Chem. Phys. 144, 084110 (2016)] rederived this quantum ¢ — 0, limit and claimed that it gives
instead the centroid-density approximation. Here we show that the + — 0. limit derived by Jang and
Voth is in fact RPMD-TST. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947589]

. INTRODUCTION

Ring-polymer molecular dynamics (RPMD) rate-theory
is a powerful method for calculating approximate thermal
quantum reaction rates. The method has been applied to a
variety of reactions, in both the gas and condensed phases,'~'?
where it has been found to give a good approximation to the
exact quantum result (where this is available) across a wide
temperature range, from the classical to the deep-tunnelling
regime.

The success of RPMD rate-theory was initially a mystery,
as the method was proposed on a heuristic basis,? and it
was not clear how a method that involves classical molecular
dynamics in an extended ring-polymer space could reproduce
deep-tunnelling rates. A subsequent analysis'? at low tempera-
tures showed that the t — 0, limit of the RPMD flux-side time-
correlation function, i.e., the RPMD transition-state theory
(RPMD-TST) rate, contains a quantum-Boltzmann ensemble
of Feynman paths that fluctuate around the instanton'* (peri-
odic orbit); this holds even for highly asymmetric reaction bar-
riers, for which the earlier centroid-density approximation'>'®
(which is the special case of RPMD-TST with a centroid
dividing surface) breaks down.!>!7

More recently, it was found that the RPMD-TST rate
also emerges naturally as a quantum transition-state theory
(QTST), corresponding to the + — 0, limit of a new type of
quantum flux-side time-correlation function.'®->* By placing
the flux and side dividing surface in the same place in path-
integral space, this function gives a non-zero ¢t — 0, limit,
and by making these surfaces invariant to imaginary-time
translation, it gives the correct quantum Boltzmann statistics
(thereby avoiding the problem of negative rates, encountered
in the related classical Wigner expression®'). It was further
shown'? that this ¢ — 0, limit (i.e., RPMD-TST) gives the
exact quantum rate in the absence of recrossing of the dividing
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surface (and of surfaces orthogonal to it in path-integral
space) and gives an approximate upper bound to the exact
quantum rate, which becomes an exact upper bound in the
high-temperature limit (where classical TST is recovered as a
special limiting case).

A recent paper by Jang and Voth?? appears to contradict
these findings; these authors derive the r — 0, limit of the
same quantum time-correlation function as in Ref. 18 but
claim to find that it gives the centroid-density approximation.
Here we show that there is no such contradiction, because the
t — 0, limit obtained by Jang and Voth is in fact RPMD-TST.
The article is structured as follows: Sec. II summarises the
key equations of RPMD rate theory and gives the quantum
time-correlation function of Ref. 18; Sec. III presents an
analysis of the t — 0, limit derived by Jang and Voth; Sec. IV
concludes the article.

Il. SUMMARY OF PREVIOUS RESULTS

Here we summarise previous results from RPMD rate-
theory and give the quantum time-correlation function
introduced in Ref. 18, of which the RPMD-TST rate is the
t — 0, limit. We will confine the analysis to a one-dimensional
system with classical Hamiltonian

2
H= ;; +V(g). (1)
m

It is straightforward to generalize these approaches to multi-
dimensional systems.!~318-20

A. RPMD-TST
For the system of Eq. (1), the RPMD Hamiltonian is
N2
Hy = 2—l +Un(q), 2
i 2m

inwhichq = {q,...,qn} are aset of N replicas of the system
coordinate ¢, p = {p1,...,pn} are the conjugate momenta,

Published by AIP Publishing.
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and Upn(q) is the ring-polymer potential

> m(gi+1 — Qi)z

Un(q) = 21 G V@ 3)
with g;+n = ¢;. Clearly Un(q) is the exponent in the standard
path-integral expression>*>> for the quantum Boltzmann
operator exp(—BH). The dynamics generated by Hy is
fictitious but satisfies two important criteria: it is exact in
the limit + — 0, and it preserves the quantum Boltzmann
distribution. These properties allow one to apply (standard)
classical rate theory in the extended phase space (p.q), to
compute a rate coefficient that gives a lower-bound estimate
of the t — 0, flux through some dividing surface f(q); this
initial flux is the RPMD-TST approximation to the quantum
rate coefficient,

o010 = fim o [ [[aqesmn
<ol @ @Al (@], @

where Q(T) is the reactant partition function, and

i

N

f@=7 %;“)% 5)

i=1
is the t — 0, flux through f(q) (and A(x) denotes the
Heaviside step-function, and we use the notation [ dq
= [ dqi ... [ dgy throughout).

An important property of f(q) is that, in order to maximise
the free energy, it must be invariant under cyclic permutation
of the beads, i.e.,

Pisivk f(@) = f(q), (6)

where P;_,;.x indicates that each ¢; is moved to the
position previously occupied by ¢;+x. A common choice
of f(q) satisfying this condition is f(q) = Qo — g¥, where
Qo = Zf\i 1 gi/N is the ring-polymer centroid (centre of mass).
This important special case of RPMD-TST is often referred
to as the centroid-density approximation.'>!® As mentioned
in the Introduction, the centroid dividing-surface works well
above the crossover temperature to deep tunnelling, but more
general forms of f(q) need to be used at lower temperatures if
the barrier is asymmetric (in which case the optimal dividing
surface involves ring-polymer stretch modes).!? In the limit
N — oo, Eq. (6) is equivalent to making f(q) invariant to
imaginary-time translation, provided f(q) is also a smooth
function of imaginary time (see the Appendix), which we will
assume in what follows.

Equation (4) can be obtained in more compact form by
integrating out the momenta p, to give

kp(1Q(T) = lim 27hBy (%

x / dq e PNUNBR@SLA @ ()

)(N—l)/Z

where

N 2
B(a) = ) [ag—;“)] ®)
i=1 !
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normalises the flux. This expression will turn out to be useful
in Sec. III.

B. Quantumt —» 0, TST

In Ref. 18, we found a quantum flux-side time-correlation
function whose ¢ — 0, limit gives klizp(T)' The standard forms
of flux-side time-correlation function (obtained from linear
response’® or scattering theory®’) give zero as t — 0,. This
property was shown in Ref. 18 to be the result of putting
the flux and side dividing surfaces in different locations in
path integral space, with the result that the flux and side are
initially decorrelated and therefore zero. When the flux and
side dividing surfaces are in the same place and when they
are taken to be a smooth permutationally invariant function
f(q) as defined above, then the resulting quantum flux-side
time-correlation function Cy(T,?) satisfies'®

ke(1Q(T) = lim Cu(T.0). ®)

The simplest way to write out Cy(7,¢) is as the derivative of
the corresponding side-side function

_ dCSS(T9 t)

CfS(T’ t) = d[

(10)
where
Ty = lim / dq / dA / dz h[f(@]hlf ()]

X pn (@, A)gi — Ai/2]e 12,
X (zile M g + A/2) (11)

with
N A
pn(@A) = [ [(gio = Ais1/20e PN lg + A/2)  (12)

i=1
and
~2
4 o
H=—+V({). (13)
2m

The t — oo limit of Cg(T,t) [of Eq. (10)] does not give the
exact quantum rate, since one must also account for recrossing
of dividing surfaces orthogonal to f(q) in path-integral space.
However, it was shown in Ref. 19 that the flux through these
orthogonal dividing surfaces is zero in the limit + — 0, and
thus that kljip(T) gives the instantaneous thermal quantum flux
from reactants to products.

lll. THE ALTERNATIVE DERIVATION

In Ref. 22, Jang and Voth rederived the ¢ — 0, limit of
Cyy(T,t) and found that it gives”®

Ku(NQ(T) = lim Ci(T'1), (14)
where
) 1
Ko = tim 5 [ dq [ dnpxtamotsa)

N
0 Tio1 + 2T + T
XZ f(@Q Ty + 2T + Tieyy

90 1 (15)

k=1
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with
N ~
pn(am) = [ [(gio = Tom/2le VP g, + T /2) (16)

i=1

and

Ti(q) = —— /@ a7

VBx(a@) 94
After analysing Eq. (15), Jang and Voth concluded that it gave
the centroid-density rate instead of RPMD-TST.
We now show that Eq. (15) does in fact give RPMD-TST,
ie.,

ki/(T) = k(D). (18)

We first note that Jang and Voth’s analysis?? considered only
the special case of a centroid dividing surface. We therefore
need to generalize the analysis to a smooth, permutationally
invariant, f(q), which satisfies Eq. (6) (which includes the
centroid dividing surface as a special case). Exploiting first the
smoothness of f(q), we note that the last term in Eq. (15) can
be replaced by Tix(q) (see the Appendix), such that Eq. (15)
simplifies to

. 1
Ko = fim s [ da [ an pvan)

xS f(q)]vBn(q) (19)

[where we have used Egs. (8) and (17) to replace the sums
over Ty by 4/ By(q)]. A similar procedure allows us to evaluate
pon(q,n) explicitly in terms of matrix elements over the
position coordinates, replacing instances of Ty + Ty by 2T,
to give

m \NP2 N
on(gq,m) = (W) exp [— Z m(giv1 — 4i)*/2 BN’

i=1

X e BON@ =1’ m 2BNT? =g n(@in /7 ON"") (20

with

1 N
On(@) = 5 ) Vigi+Tin/2) + V(g = Tin/2) - 21)
i=1

1 N
= [N Zl V(g)

where the last line uses the property 1; ~ N~ an
(where the last 1i he property 7; ~ N~'/2) and

+O0m*N7Y (22)

N
m
gn(q) = 2 ;(Clm - g)Ti(q). (23)

Equation (22) ensures that V depends only on q in the limit
N — oo, allowing us to integrate over 1. Because of the cross
term gn(q), this integral will, in the case of a completely

J

1

Uin = N7' x { V2sin(2nin/N)
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general (i.e., non-permutationally invariant) dividing surface,
give a complicated expression involving repulsive “springs”
between all pairs of “beads” g;. However, for the smooth,
permutationally invariant, f(q), it is sufficient to note that

af(q)
dq;

+O[(gi+1 — %‘)3]

(24)
and that g;+1 — ¢q; ~ N2, from which it follows that the
cross-term gn(q) disappears in the limit N — co. The integral
over 1 in Eq. (19) then closes up the matrix elements in
Ppn(q,n) into an ensemble of intact ring-polymers, giving

m (N-1)/2
/ dn pn(a) = (27r Wiz)

Substituting this expression back into Eq. (19) gives the right
hand side of Eq. (7), thus proving Eq. (18).%

N
(Pimie1 = 1) F@ = ) (are1 — 41)
i=1

e ANUN(D) 4 O(Nfl).

(25)

IV. SUMMARY

We have shown that Ref. 22 gives an alternative derivation
of RPMD-TST. There is thus no contradiction between the
t — 0, limits derived in Refs. 18 and 22, and we can be clear
that RPMD-TST is a QTST, obtained as the t — 0, limit
of a quantum time-correlation function describing the flux
through a dividing surface that is invariant to imaginary-time
translation. As discussed in Ref. 19, this does not imply
that RPMD-TST is a good approximation to all quantum
reaction rates: RPMD-TST works if the reaction is direct and
if the temperature is not too far below the instanton crossover
temperature. There are of course many reactions for which
these conditions apply, and the range of applications of RPMD
rate-theory is constantly growing.'~!2
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APPENDIX: SMOOTH DIVIDING SURFACES

One can construct an f(q), which is a smooth function
of imaginary time, by making it depend on a finite set of free
ring-polymer normal modes,

N
O, = Z Ui, n=0,%1,...,.2(M-1)/2 (Al
=1

with

n=0

n=1,...,(M-1)2 (A2)

V2cos2rln/N) n=-1,...,~(M - 1)/2
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(and note that we have normalised the modes such that Q
corresponds to the centroid). Taking M = 0 makes f(q) a
function of just the centroid; taking M > 0 gives a more
general dividing surfaces, such as is needed for asymmetric
barriers below the crossover temperature. '3

The smoothness of f(q) imposes relations between
derivatives 0 f(q)/dq; and thus between T;(q) for different
values of i. From Eq. (17), it follows that

(M-1)/2

! y Q)
VBN (@) (3o 0Qn

Substituting for U;,, using trigonometric identities, and taking
the limit N — co (whilst noting that M is finite), we obtain

Tri(q) = T(q) + O(N7Y). (A4)

Ti(q) = (A3)

This allows us to replace (T;4;+27T;+T;—1)/4 and

(Ti+1 + T;)/2 by T; in Sec. 111
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