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We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approx-
imate quantum dynamics method, to the computation of thermal reaction rates. Its short-time
transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that
its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is
then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + Hy,
D + MuH, and F + H,, and the prototypical polyatomic reaction H + CH4. Above the crossover
temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal
ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally
decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore
find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics
for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the
quantum result, providing a basis for further assessment of the accuracy of this method. © 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4928599]
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Should thermostatted ring polymer molecular dynamics be used to calculate
thermal reaction rates?

. INTRODUCTION

The accurate computation of thermal quantum rates is
a major challenge in theoretical chemistry, as a purely clas-
sical description of the kinetics fails to capture zero-point
energy, tunnelling, and phase effects."> Exact solutions using
correlation functions, developed by Yamamoto, Miller, and
others>~ are only tractable for small or model systems, as the
difficulty of computation scales exponentially with the size of
the system.

Consequently, numerous approximate treatments have
been developed, which can be broadly classed as those seeking
an accurate description of the quantum statistics without direct
calculation of the dynamics, and those which also seek to use
an approximate quantum dynamics. Methods in the first cate-
gory include instanton theory,”'7 “quantum instanton,”!1
and various transition-state theory (TST) approaches.’*2> Of
many approximate quantum dynamics methods, particularly
successful ones include the linearized semiclassical initial-
value representation (LSC-IVR),?%8 centroid molecular dy-
namics (CMD),>~% and ring polymer molecular dynamics
(RPMD).36-3?

RPMD has been very successful for the computation of
thermal quantum rates in condensed-phase processes, due to
the possibility of implementation in complex systems such
as (proton-coupled) electron transfer reaction dynamics or
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enzyme catalysis,***3 and especially in small gas-phase sys-

tems®*#-6! where comparison with exact quantum rates and
experimental data has demonstrated that RPMD rate theory
is a consistent and reliable approach with a high level of
accuracy. These numerical results have shown that RPMD rate
theory is exact in the high-temperature limit (which can also be
shown algebraically®”), reliable at intermediate temperatures,
and more accurate than other approximate methods in the deep
tunnelling regime (see Eq. (24) below), where it is within a
factor of 2-3 of the exact quantum result. RPMD also captures
zero-point energy effects’* and provides very accurate esti-
mates for barrierless reactions.*®> It has been found to system-
atically overestimate thermal rates for asymmetric reactions
and underestimate them for symmetric (and quasisymmetric)
reactions in the deep tunnelling regime. (Note that zero-point
energy effects along the reaction co-ordinate must be taken into
account when assigning the reaction symmetry.)'*>? Recently,
a general code for RPMD calculations (RPMDrate) has been
developed.®?

Another appealing feature of RPMD rate theory is its
rigorous independence to the location of the dividing surface
between products and reactants,’® a property shared by clas-
sical rate theory and the exact quantum rate,*® but not by many
transition-state theory approaches. The + — 0., TST limit of
RPMD (RPMD-TST) is identical to true quantum transition-
state theory (QTST): the instantaneous thermal quantum flux
through a position-space dividing surface which is equal to
the exact quantum rate in the absence of recrossing.>% A
corollary of this is that RPMD will be exact for a parabolic

©2015 AIP Publishing LLC
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barrier (where there is no recrossing of the optimal dividing
surface by RPMD dynamics or quantum dynamics, and QTST
is therefore also exact).®*

When the centroid is used as the dividing surface (see
Eq. (25) below), RPMD-TST reduces to the earlier theory
of centroid-TST,?>-**6667 which is a good approximation for
symmetric barriers but significantly overestimates the rate for
asymmetric barriers at low temperatures.’®**%® This effect
is attributable to the centroid being a poor dividing surface
beneath the “crossover” temperature into deep tunnelling.' In
this “deep tunnelling” regime, RPMD-TST has a close rela-
tionship to semiclassical “Im F” instanton theory,'*% which
has been very successful for calculating rates beneath the
crossover temperature, though has no first-principles deriva-
tion'* and was recently shown to be less accurate than QTST
when applied to realistic multidimensional reactions.”®

Very recently, both CMD and RPMD have been obtained
from the exact quantum Kubo-transformed’! time-correlation
function (with explicit error terms) via a Boltzmann-conserv-
ing “Matsubara dynamics”’>73 which considers evolution of
the low-frequency, smooth ‘“Matsubara” modes of the path
integral.”* Matsubara dynamics suffers from the sign problem
and is not presently amenable to computation on large systems.
However, by taking a mean-field approximation to the centroid
dynamics, such that fluctuations around the centroid are dis-
carded, one obtains CMD.”? Alternatively, if the momentum
contour is moved into the complex plane in order to make the
quantum Boltzmann distribution real, a complex Liouvillian
arises, the imaginary part of which only affects the higher, non-
centroid, normal modes. Discarding the imaginary Liouvillian
leads to spurious springs in the dynamics and gives RPMD.”*
Consequently, RPMD will be a reasonable approximation to
Matsubara dynamics, provided that the timescale over which
the resultant dynamics is required (the timescale of “falling
off” the barrier in rate theory) is shorter than the timescale
over which the springs contaminate the dynamics of interest (in
rate theory, this is usually coupling of the springs in the higher
normal modes to the motion of the centroid dividing surface
via anharmonicity in the potential).

Both RPMD and CMD are inaccurate for the computa-
tion of multidimensional spectra: the neglect of fluctuations
in CMD leads to the “curvature problem” where the spec-
trum is red-shifted and broadened, whereas in RPMD, the
springs couple to the external potential leading to “spurious
resonances.”’>’® Recently, this problem has been solved by
attaching a Langevin thermostat’’ to the internal modes of
the ring polymer’® (which had previously been used for the
computation of statistical properties’”), and the resulting Ther-
mostatted RPMD (TRPMD) had neither the curvature nor
resonance problem.

The success of RPMD for rate calculation, and the attach-
ment of a thermostat for improving its computation of spectra,
naturally motivates studying whether TRPMD will be superior
for the computation of thermal quantum rates to RPMD (and
other approximate theories),*"”8 which this article investigates.
Given that RPMD is one of the most accurate approximate
methods for systems where the quantum rates are available for
comparison, further improvements would be of considerable
benefit to the field.

J. Chem. Phys. 143, 074107 (2015)

We first review TRPMD dynamics in Section II A, fol-
lowed by developing TRPMD rate theory in Section II B.
To predict the behaviour of the RPMD rate compared to the
TRPMD rate, we apply one-dimensional Kramers theory®
to the ring-polymer potential energy surface in Section II C.
Numerical results in Section III apply TRPMD to the symmet-
ric and asymmetric Eckart barriers followed by representative
bimolecular reactions: H + H, (symmetric), D + MuH (qua-
sisymmetrical), H + CHy (prototypical polyatomic reaction)
and F + H; (asymmetric and highly anharmonic). Conclusions
and avenues for further research are presented in Section IV.

Il. THEORY
A. Thermostatted ring polymer molecular dynamics

For simplicity, we consider a one-dimensional system
(F = 1) with position ¢ and associated momentum p at in-
verse temperature 8 = 1/kgT, where the N-bead ring-polymer
Hamiltonian is*®8!

N-1 2
Hy(p.q) = )| 5—,;1 +Un(q), M
i=0

with the ring-polymer potential

N-1
Un(@) = ) Smad(qr = gi) + V(gi) @
i=0
and the frequency of the ring-polymer springs wy = 1/B8nh,
where By = B/N. Generalization to further dimensions fol-
lows immediately, and merely requires more indices.”®
The ring polymer is time-evolved by propagating stochas-
tic trajectories using TRPMD dynamics,’®"’

b= ~VUn(@ - Tp+, 2;’—Nr§<t), 3)

1

q=—p, “)
m

where q = (qo,- - . ,gn-1) is the vector of bead positions and
p the vector of bead momenta, with V4 the grad operator in
position-space, &(¢) a vector of N uniform Gaussian deviates
with zero mean and unit variance, and I" the N X N positive
semi-definite friction matrix.’®

The Fokker-Planck operator corresponding to the TRPMD
dynamics in Egs. (3) and (4) is®

P = —
A ==L Vg + Un@Vq- ¥y
+vp-r.p+ﬁﬂva-r-vp 5)

(where the arrows correspond to the direction in which the
derivative acts’?) and for any I, TRPMD dynamics will con-
serve the quantum Boltzmann distribution (Aye #PNAN®.Q
=0), a feature shared by RPMD and CMD but not some
other approximate methods such as LSC-IVR.2%?77273 We
then show in Appendix A that TRPMD obeys detailed balance,
such that the TRPMD correlation function is invariant to swap-
ping the operators at zero time and finite time, and changing the
sign of the momenta.
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The time-evolution of an observable is given by the adjoint
of Eq. (5),7882

Al, = p V- Un(@Vy-V,
—p-r-vp+ﬁ—va-r-vp. ©)

In the zero-friction limit, I' = 0 and ﬂj\, = Ljv, where Ljv is
the adjoint of the Liouvillian corresponding to deterministic
ring-polymer trajectories.”?

B. TRPMD rate theory

We assume the standard depiction of rate dynamics, with
a thermal distribution of reactants and a dividing surface in
position space. In what follows, we assume scattering dy-
namics, with the potential tending to a constant value at large
separation of products and reactants. The methodology is then
immediately applicable to condensed phase systems subject to
the usual caveat that there is sufficient separation of timescales
between reaction and equilibration.%>83

The exact quantum rate can be formally given as the long-

time limit of the flux-side time-correlation function,>
kou(B) = li i 0 )
im
™ = OB)’

where Q.(f) is the partition function in the reactant region
and®

Cfs (t)_ ,3/ da'Tr[ ~(B-0)H fp ,~o H ,iH1/h], , —sz/h] )

with F and & the quantum flux and side operators, respectively,
and H the Hamiltonian for the system. The quantum rate can
equivalently be given as minus the long-time limit of the time-
derivative of the side-side correlation function, or the integral
over the flux-flux correlation function.’

The TRPMD side-side correlation function is

1
TRPMD(\ — -~
G0 = G / dp/ “
x e PNIN®Dp £(q)|h[f(q)]. (9

where [dq= [ dq [~ dq: ... [, dgn-1 and likewise for
J dp, and q, = q,(p.q.?) is obtained by evolution of (p,q)
for time ¢ with TRPMD dynamics. The ring polymer reaction
co-ordinate f(q) is defined such that the dividing surface is
at f(q) =0, and that f(q) > O corresponds to products and
f(q) < 0 to reactants.

Direct differentiation of the side-side correlation function
using the Fokker—Planck operator in Eq. (5) yields the TRPMD
flux-side time-correlation function,

C'fl;RPMD(t) — —%CS];RPMD(I‘) (10)
= ; -BNHN(p.)
= Gy | 4o [ daies
xo[f(@]Sn(p, @Al f(a0)], (11)

where Sy(p,q) is the flux perpendicular to f(q) at time
t=0,

J. Chem. Phys. 143, 074107 (2015)

= af(q) pi
Sn(pq) = Y =L (12)

We approximate the long-time limit of the quantum flux-side
time-correlation function in Eq. (8) as the long-time limit of
the TRPMD flux-side time-correlation function in Eq. (11),
leading to the TRPMD approximation to the quantum rate as

TRPMD( )

ktrpmp(B) = ILM 0B (13)

The flux-side time-correlation function Eq. (11) will decay
from an initial TST (¢t — 0.,) value to a plateau, which (for a
gas-phase scattering reaction with no friction on motion out
of the reactant or product channel) will extend to infinity.
For condensed-phase reactions (and gas-phase reactions with
friction in exit channels), a rate is defined provided that there
is sufficient separation of timescales between reaction and
equilibration to define a plateau in CIRPMP(1),33 which at
very long times (of the order ktrpymp( ,B)‘1 for a unimolecular
reaction) tends to zero.®

Further differentiation of the flux-side time-correlation
function (with the adjoint of the Fokker-Planck operator in
Eq. (6)) yields the TRPMD flux-flux correlation function

1 —
2rn)N /dp/dqe BNHN(P.9)
x 8[f(@)]Sn(p.@)5[f(a)]Sn(pr.qr) (14)

which, by construction, must be zero in the plateau region,
during which no trajectories recross the dividing surface.
Like RPMD rate theory, TRPMD has the appealing feature
that its short-time (TST) limit is identical to true QTST, as can
be observed by applying the short-time limit of the Fokker-

to f(q), yielding’®
CTRPMD( )

lim ————

=0 OdB)
where kéM(ﬁ) is the QTST rate.®>%3¢ In Appendix B, we
then show that the TRPMD rate in Eq. (13) is rigorously
independent of the location of the dividing surface. Conse-
quently, the TRPMD rate will equal the exact quantum rate
in the absence of recrossing of the optimal dividing surface
(and those orthogonal to it in path-integral space) by either
the exact quantum or TRPMD dynamics.®* We also note that
Eq. (15) holds regardless of the value of the friction matrix T’
and that recrossing of individual (stochastic) trajectories can
only reduce the TRPMD rate from the QTST value, and hence
QTST is an upper bound to the long-time TRPMD rate.

In the following calculations, we use a friction matrix
which corresponds to damping of the free ring polymer vibra-
tional frequencies, and which has been used in previous studies
of TRPMD for spectra.”®%’ For an orthogonal transformation
matrix T such that

CgRPMD ( t) —

Planck propagator ¢”'N’

= ku(B). (15)

TTKT = mQ?, (16)

where K is the spring matrix in Eq. (2) and €;;
= 26;;sin(jn/N)/Bnh, the friction matrix is given by

I = 2.TQT”. (17)
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Here, A is an adjustable parameter, with A = 1 giving crit-
ical damping of the free ring polymer vibrations, A = 0.5
corresponding to optimal sampling of the free ring polymer
potential energy, and A = 0 corresponding to zero friction
(i.e., RPMD).”®7 A crucial consequence of this choice of
friction matrix is that the centroid of the ring polymer is un-
thermostatted, and the short-time error of TRPMD from exact
quantum dynamics is therefore O(t”), the same as RPMD."88

C. Relation to Kramers theory

To provide a qualitative description of the effect of fric-
tion on the TRPMD transmission coefficient, we apply clas-
sical Kramers theory®” in the extended N F-dimensional ring

J dp [ dq e PNIN®OS] F(q)]Sy (p, )AL (q))]

J. Chem. Phys. 143, 074107 (2015)

polymer space, governed by dynamics on the (temperature-
dependent) ring-polymer potential energy surface in Eq. (2).
Since the short-time limit of TRPMD rate theory is equal to
QTST, and its long-time limit invariant to the location of the
dividing surface, TRPMD will give the QTST rate through the
optimal dividing surface (defined as the surface which mini-
mises kéM( B)),"® weighted by any recrossings of that dividing
surface by the respective dynamics. We express this using the
Bennett-Chandler factorization,?®

kiresn(B) = k() lim Kigpy(t), (18)

where ké’;\d(ﬁ) is the QTST rate, the asterisk denotes that the
optimal dividing surface f*(q) is used, and the TRPMD trans-
mission coefficient is

“rremnll) = [ dp [ dq e PNHEN®OS] £+(q)]S% (P, Q)A[S% (P, )]

with analogous expressions to Egs. (18) and (19) for RPMD.
To examine the explicit effect of friction on the TRPMD rate,
we define the ratio

ktremp(8)
=" 20
x(B) feonn(B) (20)
and from Eq. (18),
xi(B) = lim KTLMDO) 1)

1= Kepap(t)

We then assume that the recrossing dynamics is dominated by
one-dimensional motion through a parabolic saddle point on
the ring-polymer potential energy surface, in which case the
TRPMD transmission coefficient can be approximated by the
Kramers expression®’-3~!

lim krgenp(t) = /1 + Ujp ~ ORP; (22)

where formally arp = yrp/2wrp, With ygrp the friction along
the reaction co-ordinate and wgp the barrier frequency in ring-
polymer space. For a general F-dimensional system finding
f*(q) and thereby computing yrp and wgp are largely intrac-
table. However, we expect yrp « A, and therefore define @grp
= agrp/A where the dimensionless parameter @gp is expected
to be independent of A for a given system and temperature,
and represents the sensitivity of the TRPMD rate to friction.
We further approximate that there is minimal recrossing of the
optimal dividing surface by the (unthermostatted) ring polymer
trajectories such that lim;_,co Kgppp(?) = 1,” leading to

x(B) = +J1+ Mg, — Mgp. (23)

Equation (23) relates the ratio of the TRPMD and RPMD
rates as a function of A with one parameter @gp, and without
requiring knowledge of the precise location of the optimal

19)

dividing surface f*(q). However, we can use general observa-
tions concerning which ring-polymer normal modes contribute
to f*(q) to determine the likely sensitivity of the TRPMD
rate to friction. Above the crossover temperature into deep
tunnelling, defined by'3

2r

.= , 24
b= (24)
where w), is the barrier frequency in the external potential
V(q), the optimal dividing surface is well approximated by the

centroid,!?
=
f@=5 > a-d (25)
i=0

where g* is the maximum in V(g). As the centroid is not
thermostatted (since Qg = 0), in this regime yrp = 0 = @rp
and we therefore predict from Eq. (23) that the rate will be
independent of A, i.e., kTRPMD(ﬁ) o kRPMD(B)-

Beneath the crossover temperature, the saddle point on the
ring-polymer potential energy surface bends into the space of
the first degenerate pair of normal modes.!>* For symmet-
ric systems, the optimal dividing surface is still the centroid
expression in Eq. (25) and (insofar as the reaction dynamics
can be considered one-dimensional) @gp =~ 0, so ktrpmp(8)
~ krpmp(8).

For asymmetric reactions, the optimal dividing surface is
now a function of both the centroid and first degenerate pair
of normal modes (which are thermostatted),'® and we expect
agrp > 0.From Eq. (23), the TRPMD rate will decrease linearly
with A for small A, for large friction as A~L, and the ratio of
the TRPMD to RPMD rates to be a convex function of A.
This behaviour would also be expected for symmetric reactions
beneath the second crossover temperature where the optimal
dividing surface bends into the space of the second degenerate
pair of normal modes.'? In all cases, one would expect that
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increasing friction would either have no effect on the rate or
at sufficiently low temperatures cause it to decrease.

It should be stressed that Eq. (23) is a considerable simpli-
fication of the TRPMD dynamics and is not expected to be
reliable in systems where the ring polymer potential energy
surface is highly anharmonic or skewed (such as F + H; inves-
tigated below). In fact, even for a one-dimensional system,
the minimum energy path on the N-dimensional ring poly-
mer potential energy surface shows a significant skew beneath
the crossover temperature. The utility of Eq. (23) lies in
its simplicity and qualitative description of friction-induced
recrossing.

lll. RESULTS

We initially study the benchmark one-dimensional sym-
metric and asymmetric Eckart barriers before progressing to
the multidimensional reactions H + H; (symmetric), D + MuH
(quasisymmetrical), H + CH4 (asymmetric, polyatomic), and
F + H, (asymmetric, anharmonic).

A. One-dimensional results

The methodology for computation of TRPMD reaction
rates is identical to that of RPMD," except for the ther-
mostat attached to the internal normal modes of the ring
polymer, achieved using the algorithm in Ref. 79. The Bennett-
Chandler® factorization was employed, and the same dy-
namics can be used for thermodynamic integration along the
reaction co-ordinate (to calculate the QTST rate) as to propa-
gate trajectories (to calculate the transmission coefficient).”®”"

We first examine the symmetric Eckart barrier, %
V(g) = Vo sech*(q/a), (26)
and to facilitate comparison with the literature,'3%70 use

parameters to model the H + H; reaction: Vy = 0.425 eV, a
= 0.734ay, and m = 1061m,, leading to a crossover temper-
ature of kB, = 2.69 X 1073 K~!. The centroid reaction co-
ordinate of Eq. (25) was used throughout. Results for a va-
riety of temperatures and values of friction parameter A are
presented in Fig. 1, and values of @rp obtained by nonlinear
least squares in Table I.

Slightly beneath the crossover temperature (kg
=3 x 1073 K1), the TRPMD rate is independent of the value
of friction (agp = 0), as predicted by Kramers theory. Some

J. Chem. Phys. 143, 074107 (2015)
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FIG. 1. Results for the symmetric Eckart barrier, showing the TRPMD result
as a function of A (red crosses), fitted Kramers curve (green dashes), and
quantum result (black line). B is quoted in units of kg 11073 K~! and the
crossover temperature is kg, =2.69x 1073 K1,

sensitivity to A is seen before twice the crossover temperature,
which is likely to be a breakdown of the one-dimensional
assumption of Kramers theory; while the centroid is the
optimal dividing surface, the minimum energy path bends
into the space of the (thermostatted) lowest pair of normal
modes.® Beneath twice the crossover temperature, the friction
parameter has a significant effect on the rate, as to be expected
from the second degenerate pair of normal modes becoming
part of the optimal dividing surface.'® The functional form of
x(B) is also in accordance with the predictions of Kramers
theory, monotonically decreasing as A rises, and being a convex
function of A.

Since RPMD underestimates the rate for this symmetric
reaction (and many others'?), adding friction to RPMD de-
creases its accuracy in approximating the quantum rate for this
system.

TABLE I. Dimensionless friction sensitivity parameter @rp from Eq. (23), fitted by nonlinear least squares to

simulation data.

1D Eckart barriers

Multidimensional reactions

kpB/1073 K1 3 5 7 T/K 500 300 200
Symmetric <0.01  0.11 037 H+H, 0.01 0.16 0.45
D + MuH 0.20 0.45 0.71
Bla.u. 4 8 12 T/K 500 300 200
Asymmetric 0.00 0.06 0.17 H+CHy 0.00 0.10 0.16 (250 K)

F+H; -0.01 -0.01 0.00




074107-6 T. J. H. Hele and Y. V. Suleimanov

2.5—_
2.0_———x———ﬁ&———%———x———k———
1.5+ x  TRPMD())
1.0 1 QM

0.5 - — - Kramers
00 ] T T T T T T T T T T T T
0.00 0.25 050 0.75 1.00 1.25 1.50
40 -
301
20
104 pB=8
0 T T T T T T T T T T T

0.00 025 050 075 1.00 1.25 1.50
6000

p=4

c(B)

4000

2000 -
0 T T T T T T T T T T T T
0.00 0.25 050 075 1.00 125 1.50
A

FIG. 2. Results for the asymmetric Eckart barrier quoted as ¢ () [Eq. (28)],
showing the TRPMD result as a function of A (red crosses), fitted Kramers
curve (green dashes), and quantum result (black line). The crossover temper-
ature is B =27 a.u.

The asymmetric Eckart barrier is given by>?

B
+ b
1 +e24/4 " cosh*(q/a)
where A = —18/x, B = 13.5/n,and a = 8/V 3 in atomic units
(h = kg = m = 1), giving a crossover temperature of 3. = 2.

To facilitate comparison with previous literature, 3384 the
results are presented in Fig. 2 as the ratio

_ _k(B)
C(ﬁ) B kclas(IB)

Vig) =

27)

(28)

and arp values in Table 1.

Above the crossover temperature, TRPMD is invariant to
the value of the friction parameter, and beneath the crossover
temperature, increasing A results in a decrease in the rate,
such that TRPMD is closer to the exact quantum result than
RPMD forall A > 0in this system. The decrease in the TRPMD
rate with A is qualitatively described by the crude Kramers
approximation (see Fig. 2), and it therefore seems that the
improved accuracy of TRPMD could be a fortuitous cancella-
tion between the overestimation of the quantum rate by QTST,
and the friction-induced recrossing of the optimal dividing
surface by TRPMD trajectories. There is no particular a priori
reason to suppose that one value of A should provide superior
results; from Fig. 2, at 8 = 8, a friction parameter of A = 1.25
causes TRPMD to equal the quantum result to within graphical
accuracy, whereas at 8 = 12, this value of friction parameter
causes overestimation of the rate, and further calculations (not
shown) show that A = 5 is needed for TRPMD and the quantum
rates to agree.

J. Chem. Phys. 143, 074107 (2015)

The numerical results also show a slightly higher curva-
ture in ktrpmp(B) as a function of A than Eq. (23) would predict
suggesting that the TRPMD rate reaches an asymptote at a
finite value, rather than at zero as the Kramers model would
suggest. We suspect this is a breakdown of one-dimensional
Kramers theory, since in the A — oo limit, the system can still
react via the unthermostatted centroid co-ordinate, but may
have to surmount a higher barrier on the ring polymer potential
energy surface.

We then investigate the effect of changing the location
of the centroid dividing surface on the TRPMD rate. RPMD
is already known to be invariant to the location of the divid-
ing surface,”® and we therefore choose a system for which
TRPMD and RPMD are likely to differ the most, namely,
a low-temperature, asymmetric system where there is ex-
pected to be significant involvement of the thermostatted
lowest degenerate pair of normal modes in crossing the bar-
rier. The asymmetric Eckart barrier at S = 12 is therefore
used as a particularly harsh test, with the result plotted in
Fig. 3. Although the centroid-density QTST result varies by
almost a factor of six across the range of dividing surfaces
considered (-3 < ¢* < =2 a.u.), both the TRPMD and RPMD
rates are invariant to the location of the dividing surface. We
also observe that, even with the optimal dividing surface,
centroid-density QTST significantly overestimates the exact
rate. 3%

B. Multidimensional results

The results are calculated using adapted RPMDrate
code,? with details summarized in Table II. In the calculations
reported below, we used the potential energy surface devel-
oped by Boothroyd et al. (BKMP2 PES) for H + H, and D
+ MuH,"” the Stark—Werner (SW) potential energy surface for
F + H,,% and the PES-2008 potential energy surface developed
by Corchado et al. for H+ CH,.”” The computation of the
free energy was achieved using umbrella integration' %0 with
TRPMD and checked against standard umbrella integration
with an Andersen thermostat.'%?

H + H; represents the simplest atom-diatom scattering
reaction and has been the subject of numerous studies.**3%193

100000
— QTST
8ooooq\ RPMD
--- TRPMD
a 60000+
5]
40000+
20000+

0 : ; ,
-3.0 -28 -26 -24 -22 -20
qx
FIG. 3. TRPMD (green dashes), RPMD (blue dots), and QTST (centroid

dividing surface, red line) rates for the asymmetric Eckart barrier at 8 =12,
as a function of the dividing surface g*.
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TABLEII. Input parameters for the TRPMD calculations on the H + Hy, D + MuH, and F + Hj reactions. The explanation of the format of the input file can be
found in the RPMDrate code manual (see Ref. 82 and http://www.mit.edu/ysuleyma/rpmdrate).

Reaction
Parameter H+ H; D + MuH F+ H, H + CHy Explanation
Command line parameters
Temp 200; 300; 500 250; 300; 500 Temperature (K)
Nbeads 128 512 384 (200 K) 192 (250 K) Number of beads in the TRPMD calculations
256 (300 K) 128 (300 K)
64 (500 K) 64 (500 K)
Dividing surface parameters
R 30 30 30 30 Dividing surface s parameter (ag)
Nponds 1 1 1 1 Number of forming and breaking bonds
Nchannel 2 1 2 4 Number of equivalent product channels
Thermostat options
thermostat “GLE/Andersen” Thermostat for the QTST calculations
A 0;0.25; 0.5; 0.75; 1.0; 1.5 Friction coeflicient for the recrossing factor calculations
Biased sampling parameters
Nyindows 111 111 111 111 Number of windows
&1 —-0.05 -0.05 —-0.05 -0.05 Center of the first window
dé 0.01 0.01 0.01 0.01 Window spacing step
EN 1.05 1.05 1.05 1.05 Center of the last window
dt 0.0001 0.0001 0.0001 0.0001 Time step (ps)
k; 2.72 2.72 2.72 2.72 Umbrella force constant ((T/K) eV)
Nirajectory 200 200 200 200 Number of trajectories
Lequilibration 20 20 20 20 Equilibration period (ps)
Esampling 100 100 100 100 Sampling period in each trajectory (ps)
N; 2x 108 2x108 2x 108 2x108 Total number of sampling points
Potential of mean force calculation
&o -0.02 -0.02 -0.02 -0.02 Start of umbrella integration
&t 1.0000*  0.9912 (200 K)*  0.9671 (200 K)* 1.0093 (250 K)*  End of umbrella integration
0.9904 (300 K)*  0.9885 (300 K)* 1.0074 (300 K)*
0.9837 (500 K)*  0.9947 (500 K)* 1.0026 (500 K)*
Nbins 5000 5000 5000 5000 Number of bins
Recrossing factor calculation
dt 0.0001 0.00003 0.0001 0.0001 Time step (ps)
Tequilibration 20 20 20 20 Equilibration period (ps) in the constrained (parent) trajectory
Niotalchild 100000 100000 500000 500000 Total number of unconstrained (child) trajectories
£ childsampling 20 20 20 20 Sampling increment along the parent trajectory (ps)
Nchild 100 100 100 100 Number of child trajectories per one initially constrained configuration
Tehild 0.05 0.2 0.2 0.1 Length of child trajectories (ps)

2Detected automatically by RPMDrate.

The PES is symmetric and with a relatively large skew angle
(60°) and a crossover temperature of 345 K. The results in
Fig. 4 show that the rate is essentially invariant to the value
of A above the crossover temperature. At 300 K, there is a
slight decrease in the rate with increasing friction from O to 1.5
(~25%), and this is far more pronounced at 200 K where the
A = 1.5 result is almost half that of the A = 0 (RPMD) result.
D + MuH is “quasisymmetrical” since DMu and MuH
have very similar zero-point energies, and one would therefore
expect the RPMD rate to underestimate the exact quantum
rate.*’ Since it is Mu-transfer, the crossover temperature is very

high (860 K) and therefore this reaction can be considered as a
stress test for the deep tunneling regime. The results in Fig. 5
show that friction in the TRPMD dynamics causes further
underestimation of the rate, especially at low temperatures; for
A = 1.5 at 200 K, TRPMD underestimates the exact quantum
rate by almost an order of magnitude, and even at 500 K, it
decreases by ~40% over the range of A explored here.

As an example of a typical asymmetric reaction, results for
H + CH, are plotted in Fig. 6, which has a crossover tempera-
ture of 341 K. RPMD is well-known to overestimate the quan-
tum rate for this system at low temperatures.*® Fig. 6 shows that
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FIG. 4. Results for the H+ H, reaction as a function of A. Kramers is the
fitted Kramers curve (see text). The crossover temperature is 345 K.

above the crossover temperature (500 K), the friction param-
eter has a negligible effect on the rate. As the temperature is
decreased below the crossover temperature (300 K and 250 K),
the friction induces more recrossings of the dividing surface

D+MuH

T =500 K
g2 T x
— ' T=300K
%2}
(4p)
=
© K
~ B3 <
E - x
~< x  TRPMD(L) T=200K
— QM
1E-14 X - ——~ - - Kramers
1 K= —ne
] TXe -
Tm - - X

T T T T T T T T T T T T
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A

FIG. 5. As for Fig. 4, but for the D + MuH reaction with a high crossover
temperature of 860 K.
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H+CH,
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FIG. 6. Results for the H+ CHy4 reaction. The crossover temperature is 341 K.

and, as aresult, the TRPMD rate approaches the exact quantum
rate with increasing the friction parameter.

Thus far, Kramers theory has been surprisingly successful
at qualitatively explaining the behaviour of the TRPMD rate
with increasing friction. Present results would suggest that
TRPMD would therefore improve upon RPMD for all asym-
metric reactions, where RPMD generally overestimates the
rate beneath crossover.'3> We then examine another prototyp-
ical asymmetric reaction, F + H,, with a low crossover temper-
ature of 264 K. Figure 7 shows that at 500 K and 300 K, the
TRPMD rate is in good agreement with the quantum result,
but increases very slightly with A causing a spurious small
negative value of @gp in Table 1. Beneath crossover, at 200 K,
the rate is still virtually independent of lambda, apart from a
very slight increase around A = 0.5. Consequently, TRPMD
fares no better than RPMD for this system, contrary to the
H + CH, results and the predictions of Kramers theory. This
is likely attributable to a highly anharmonic and exothermic
energy profile, and a very flat saddle point in ring-polymer
space.?8:104

As can be seen from the graphs, the simple Kramers
prediction is in surprisingly good qualitative agreement with
the numerical results (apart from F + H, beneath crossover),
even for the multidimensional cases, which is probably attrib-
utable to those reactions being dominated by a significant
thermal barrier which appears parabolic on the ring-polymer
potential energy surface, meaning that the one-dimensional
Kramers model is adequate for capturing the friction-induced
recrossing. In Table I, the agp values, fitted to the numerical
data, show that for a given reaction @gp =~ 0 above the cross-
over temperature and beneath the crossover temperature @rp
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FIG. 7. Results for the anharmonic and asymmetric F+H, reaction with a
crossover temperature of 264 K.

increases as the temperature is decreased. This can be qual-
itatively explained as the optimal dividing surface becoming
more dependent on the thermostatted higher normal modes
as the temperature is lowered.'? Not surprisingly, the highest
value of @gp is observed for the highly quantum mechanical D
+ MuH reaction at 200 K with @gp = 0.71. This is beneath one
quarter of the crossover temperature, and one would therefore
expect that friction would have a very significant effect on the
rate.

IV. CONCLUSIONS

In this paper we have, for the first time, applied TRPMD
to reaction rate theory. Regardless of the applied friction, the
long-time limit of the TRPMD flux-side time-correlation func-
tion (and therefore the TRPMD rate) is independent of the
location of the dividing surface, and its short-time limit is
equal to rigorous QTST.53-6%78 In Section II C, we use Kramers
theory®” to predict that, above the crossover temperature, the
RPMD and TRPMD rates will be similar, and beneath cross-
over the TRPMD rate for asymmetric systems will decrease
with A, and the same effect should be observed for symmetric
systems beneath half the crossover temperature.

TRPMD rate theory has then been applied to the standard
one-dimensional model systems of the symmetric and asym-
metric Eckart barriers, followed by the bimolecular reactions
H+ H,, D + MuH, H + CH4, and F + H,. For all reactions
considered, above the crossover temperature the TRPMD rate
is virtually invariant to the value of A and therefore almost
equal to RPMD, as predicted by Kramers theory. Beneath
the crossover temperature, most asymmetric reactions show a

J. Chem. Phys. 143, 074107 (2015)

decrease in the TRPMD rate as A is increased, and in qualitative
agreement with the Kramers prediction in Eq. (23). A similar
trend is observed for symmetric reactions, which also show
some diminution in the rate with increasing friction above
half the crossover temperature (8. < 8 < 2(.), probably due
to the skewed ring-polymer PES causing a breakdown in the
one-dimensional assumption of Kramers theory. For the asym-
metric and anharmonic case of F + H,, beneath the cross-
over temperature, there is no significant decrease in the rate
with increased friction, illustrating the limitations of Kramers
theory.

These results mean that beneath the crossover tempera-
ture TRPMD will be a worse approximation to the quantum
result than RPMD for symmetric and quasisymmetrical sys-
tems (where RPMD underestimates the rate'3?), and TRPMD
will be closer to the quantum rate for asymmetric potentials
(where RPMD overestimates the rate). However, the apparent
increase in accuracy for asymmetric systems appears to be a
cancellation of errors from the overestimation of the quantum
rate by RPMD which is then decreased by the friction in the
non-centroid normal modes of TRPMD, and there is no a priori
reason to suppose that one effect should equal the other for any
given value of A.

Although the above results do not advocate the use of
TRPMD rate theory as generally being more accurate than
RPMD, TRPMD rate calculation above the crossover tempera-
ture may be computationally advantageous in complex systems
due to more efficient sampling of the ring-polymer phase space
by TRPMD trajectories than RPMD trajectories.'® TRPMD
may therefore provide the same accuracy as RPMD rate calcu-
lation at a lower computational cost, and testing this in high-
dimensional systems where RPMD has been successful, such
as complex-forming reactions,*®>3°%6! surface dynamics,*’
and enzyme catalysis,*” would be a useful avenue of future
research.

Future work could also include non-adiabatic sys-
tems,*1=43106-110 3pplying a thermostat to the centroid to model
abath system,*’ and generalizations to non-Markovian friction
using Grote-Hynes theory.'!!

In closing, present results suggest that TRPMD can be
used above the crossover temperature for thermally activated
reactions, and beneath crossover, further testing is required to
assess its utility for asymmetric systems.
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APPENDIX A: DETAILED BALANCE

For a homogeneous Markov process such as TRPMD
for which negative time is not defined,? detailed balance is
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defined as'!?

-p.4q,0)p(p".q")
(AD)

P@.q.1[p.q,0)ps(p,q) = P(-Pp.q.1]

where p,(p,q) = e PNHNPQ i5 the stationary distribution and
P(p’,q’,t|p,q,0) is the conditional probability that a ring poly-
mer will be found at point (p’,q’) at time ¢, given that is was at
(p,q) at time ¢ = 0.

To demonstrate that Eq. (A1) is satisfied, we rewrite the
Fokker-Planck operator Eq. (5) as

-1
0
Z ( a(p,q); + -—b(p.q),
=0 CI] p
| NZIN-
+= (p q)jj’ (AZ)
2 g ) 0 Gp]

where the vectors a(p,q) = p/m, b(p,q) = —UN(q)<V_q -I'-p
and the matrix C(p,q) = 2mI'/ By. Note that the derivatives in
Eq. (A2)actona(p,q), b(p,q), or C(p,q) and whatever follows
them which is acted upon by Ay.

The necessary and sufficient conditions for detailed bal-
ance [Eq. (A1)] to hold, in addition to p(p,q) being a station-
ary distribution, are then given by''?

a(-p.q)ps(p.q) = —a(p,q)ps(p.q), (A3)
—b(-p.q)" ps(p.q) = -b(p.q)" p,(p, @)+, - C(p,q)p5(p. Q).

(A4)

C(-p.q) = C(p,q). (AS)

Condition Eq. (A3) is trivially satisfied. Provided that the
friction matrix is even with respect to momenta (satisfied here
as I' is not a function of p), Eq. (AS5) will be satisfied. Eq. (A4)
becomes

(T - p)7 ps(p.q) = _ﬁﬂva Tppq)  (A6)

which is satisfied with py(p,q) = e PNHN®.9 and the friction
matrix used here.

Given that Eq. (A1) is satisfied, for an arbitrary correlation
function, one can then show

gy | 0 [ da [ av [ aa

x e AVEN®-9DA(p,q)P(p’,q’,t|p.q.0)B(p’.q")

(A7)
1 ’ ’
= Gy [ o [ aa [ v [ aq
% e‘ﬁNHN(P-‘I)A(_p”q’)
X P(p/’ q/’t|p’ q, O)B(_p’ q)’ (AS)

and for the Langevin trajectories considered here, which are
continuous but not differentiable, this means

1
d dq e PNENG.@

(Znh)N/ p/ ae

X A(p, q)B(p:,q,) (A9)

- ﬁ/dp/dq e PNHN®D.O)

X A(-p:.q,)B(-p.q),

C};%PMD (t) —

C;];PMD ( l) —

(A10)
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where q; = q,(p,q,?) is the vector of positions stochastically
time-evolved according to Egs. (3) and (4), and

Bprq,) = / dy’ / dq PE.q.1p.0.0BE.q¢),  (AlD)

with A(p,,q,) similarly defined.

APPENDIX B: INDEPENDENCE OF ktrpmp(B)
TO THE DIVIDING SURFACE LOCATION

We use a similar methodology to that which Craig and
Manolopoulos employed for RPMD,® and give the main steps
here. We first differentiate the side-side correlation function in
Eq. (9) with respect to the location of the dividing surface g*
(or any other parameter specifying the nature of the dividing
surface), giving

d 1
—C(t)=—— | d dq e BNHN®.Q)
170 = gy [ 4p [ dae

af W (sl @Inl @) + LA @6l @)}
B1)

Since TRPMD dynamics obeys detailed balance (as shown in
Appendix A), and the dividing surface is only a function of
position, the second term on the RHS of Eq. (B1) is identical
to the first,

d — 2 -BNHN(p.q)
@csm—mfdp/dqe”’ Hima
f s r@nl s, (B2)

Differentiation of Eq. (B2) with respect to time using Eq. (6),
and relating the side-side and flux-side functions using
Eq. (10), yields

d 2
—C()=——""— | d da e PNHEN®.Q)
i W)=~ h)N/ p/ qe

x 9 ;‘*’6[f(q>]6[f(qt>]sN<p,,q,> (B3)

Equation (B3) corresponds to a trajectory commencing at the
dividing surface at time zero and returning to it at time ¢ with
non-zero velocity Sy(pr,q;). At finite times while there is
recrossing of the barrier, there will be trajectories satisfying
these conditions, but after the plateau time when no trajectories
recross the barrier [cf. Eq. (14)], these conditions are clearly
not satisfied, and the rate will be independent of the location
of the dividing surface.’

This proof is valid for any friction matrix which satisfies
the detailed balance conditions of Appendix A and does not
require the presence of ring-polymer springs in the potential,
so is valid for any classical-like reaction rate calculation using
Langevin dynamics.
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