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We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single
change to the derivation of the “Classical Wigner” approximation. Here, we show that the further
approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for
treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and
ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation
to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and
that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the
frequencies of these fluctuations. These findings are consistent with previous numerical results
and give explicit formulae for the terms that CMD and RPMD leave out. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4921234]

I. INTRODUCTION

Quantum Boltzmann time-correlation functions play a
central role in chemical physics and are (usually) impossible
to calculate exactly. One promising approach is to treat the
statistics quantally and the dynamics classically. The standard
way to do this is to use the linearized semi-classical initial
value representation (LSC-IVR or “classical Wigner approxi-
mation”),1 but this has the drawback of not satisfying detailed
balance. Recently,2 however, we found that a single change to
the LSC-IVR derivation gives a classical dynamics which does
satisfy detailed balance. This modified version of LSC-IVR is
called “Matsubara dynamics.”

We can summarise Matsubara dynamics as follows: at
initial time, the quantum statistics gives rise to delocalized
distributions in position which are smooth functions of imagi-
nary time. If we constrain the LSC-IVR dynamics to conserve
this smoothness (by including only the smooth “Matsubara”
modes—see Sec. II), we find that it satisfies detailed balance
and gives better agreement than LSC-IVR with the exact quan-
tum result.2 We suspect (but have not yet proved) that Mat-
subara dynamics reproduces the time-dependence of the exact
Kubo-transformed time-correlation function up to order ~0 and
is thus the correct theory for describing quantum statistics and
classical dynamics.

Matsubara dynamics suffers from the sign problem and
is hence impractical, but the findings just described suggest
that it should be the starting point from which to make further
approximations if one wishes to devise practical methods that
combine quantum statistics with classical dynamics. Numer-
ical tests in Ref. 2 (see also Fig. 1) showed that the popu-
lar centroid molecular dynamics3,4 (CMD) and ring-polymer
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molecular dynamics5,6 (RPMD) methods appear to be two such
approximations. Here, we confirm this by deriving the terms
that CMD and RPMD leave out from the Matsubara dynamics.7

II. SUMMARY OF MATSUBARA DYNAMICS

Matsubara dynamics approximates the quantum Kubo-
transformed time-correlation function8

CAB(t) = 1
β

 β

0
dλ Tr


e−λ Ĥ Âe−(β−λ)Ĥei Ĥ t/~B̂e−i Ĥ t/~


(1)

by

CMats
AB (t) = lim

M→∞
C[M ]

AB
(t), (2)

where

C[M ]
AB

(t) = αM

2π~


dP


dQ A(Q)e−β[ HM(P,Q)−iθM(P,Q)]

× eLM tB(Q) (3)

and αM = ~
(1−M ) [(M − 1)/2] !2. The position coordinates Q

≡ {Qn}, with n = −(M − 1)/2, . . . , (M − 1)/2, are the M Mat-
subara modes, which describe closed paths q(τ) that are
smooth functions of the imaginary time τ (= 0 → β~), where
Q0 is the centroid coordinate (see the Appendix);


dQ

≡
n

 ∞
−∞ dQn, and P are similarly defined for momentum.

The functions A(Q) and B(Q) are obtained from the operators
Â and B̂ (see the Appendix), such that Â = B̂ = q̂ gives A(Q)
= B(Q) = Q0.9 The propagator eLM t contains the Matsubara
Liouvillian

LM =

(M−1)/2
n=−(M−1)/2

Pn

m
∂

∂Qn

− ∂UM(Q)
∂Qn

∂

∂Pn

(4)

in which the potential energy UM(Q) is given in the Appendix.
The quantum Boltzmann distribution in Eq. (3) is complex and
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FIG. 1. Comparisons of Matsubara, CMD, RPMD and (exact) quantum
Kubo-transformed autocorrelation functions, for the quartic potential V (q)
= q4/4, with mass m = 1, at temperature β = 2 (in a.u.). The position auto-
correlation functions in (a) are taken from Ref. 2. The position-squared auto-
correlation functions in (b) were calculated numerically using the procedure
described in Ref. 2, with M = 7 Matsubara modes.25 The differences be-
tween the Matsubara and exact quantum results show the importance of real-
time quantum coherence in this model system, the neglect of which (in the
Matsubara calculations) has blue-shifted and broadened the spectrum.

contains the Matsubara Hamiltonian

HM(P,Q) = P2

2m
+ UM(Q) (5)

and the phase

θM(P,Q) =
(M−1)/2

n=−(M−1)/2

Pnωn
Q−n, (6)

where ωn are the Matsubara frequencies ωn = 2πn/β~. Mat-
subara dynamics is inherently classical (meaning that terms
O(~2) disappear from the quantum Liouvillian on decoupling
the Matsubara modes, leaving LM), and conserves the Hamil-
tonian HM(P,Q) and the phase θM(P,Q), and thus satisfies
detailed balance.

Clearly, Eq. (3) suffers from the sign problem because of
the phase θM(P,Q). Let us make the coordinate transformation
Pn = Pn − imωn

Q−n. This gives

C[M ]
AB

(t) = αM

2π~



(M−1)/2
n=−(M−1)/2

 ∞−imωn Q−n

−∞−imωn Q−n
dPn



×


dQ A(Q)e−β RM(P,Q)eLM tB(Q), (7)

where

RM(P,Q) = *.
,

(M−1)/2
n=−(M−1)/2

P
2
n

2m
+

m
2
ω2
n
Q2
n
+/
-
+ UM(Q) (8)

is the “ring-polymer” Hamiltonian familiar from quantum
statistics.10–13 Equation (7) is simply Eq. (3) in disguise, but
at t = 0, we can use a standard contour-integration trick14 to
shift Pn onto the real axis giving

C[M ]
AB

(0) = αM

2π~


dP


dQ A(Q)B(Q)e−β RM(P,Q), (9)

which now contains the (real) ring-polymer distribution,10 and
hence no longer suffers from the sign problem. Unfortunately,
this trick does not work for t > 0 (see Sec. IV), so we are stuck
with Eq. (3), which motivates us to find approximations to
Matsubara dynamics.

III. CENTROID MEAN-FIELD APPROXIMATION

This approximation can be made if A(Q) is a function of
just the centroid Q0 (or P0),9 in which case we need only the
Matsubara dynamics of the centroid reduced density

b(Q0, P0, t) =


dP′


dQ′ e−β[ HM(P,Q)−iθM(P,Q)]

× eLM tB(Q), (10)

where the primes denote integration over all modes except P0
and Q0. Differentiation with respect to t, application of Eq. (4),
and integration by parts give

ḃ(Q0, P0, t) =


dP′


dQ′ e−β[ HM(P,Q)−iθM(P,Q)]

×L0eLM tB(Q), (11)

where

L0 =
P0

m
∂

∂Q0
− ∂UM(Q)

∂Q0

∂

∂P0
. (12)

In the usual way of mean-field dynamics,15 we can split the
force on the centroid into

− ∂UM(Q)
∂Q0

= F0(Q0) + Ffluct(Q), (13)

where F0(Q0) is the mean-field force

F0(Q0) = − 1
Z(Q0)


dP′


dQ′ e−β[ HM(P,Q)−iθM(P,Q)]∂UM(Q)

∂Q0

= − 1
Z(Q0)


dP
′


dQ′ e−β RM(P,Q) ∂UM(Q)
∂Q0

(14)

(and we have used the t = 0 contour-integration trick to get to
the second line),

Z(Q0) =


dP
′


dQ′ e−β RM(P,Q) (15)

and Ffluct(Q) is the fluctuation force (defined by Eq. (13) as the
difference between the exact force and F0(Q0)). Equation (11)
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then splits into

ḃ(Q0, P0, t) =


P0

m
∂

∂Q0
+ F0(Q0) ∂

∂P0


b(Q0, P0, t)

+


dP′


dQ′ e−β[ HM(P,Q)−iθM(P,Q)]

× Ffluct(Q) ∂

∂P0
eLM tB(Q). (16)

This type of expression is encountered in coarse-graining,
where the integral is sometimes approximated by a generalized
Langevin term.15 It is an exact rewriting of Eq. (11). Neglect
of the integral term gives the mean-field approximation

ḃ(Q0, P0, t) ≃


P0

m
∂

∂Q0
+ F0(Q0) ∂

∂P0


b(Q0, P0, t) (17)

which is CMD.3,4,16

Thus, CMD corresponds to approximating Matsubara dy-
namics by leaving out the fluctuation term in Eq. (16). This
result is not a surprise and is consistent with previous numerical
findings17 that CMD causes errors through neglect of fluctua-
tions (see Sec. V). What is new is that Eq. (16) gives an explicit
formula for these fluctuations in the case that the quantum
dynamics can be approximated by Matsubara dynamics.

IV. ANALYTIC CONTINUATION AT t > 0

We now return to Eq. (7), which is just Eq. (3) rewritten in
terms of (P,Q). Expressing LM in terms of these coordinates
gives

LM = L[RP]
M + iL[I]

M, (18)

where

L[RP]
M =

(M−1)/2
n=−(M−1)/2

Pn

m
∂

∂Qn

−

mω2

n
Qn +

∂UM(Q)
∂Qn



∂

∂Pn

(19)

is the RPMD Liouvillian (corresponding to the ring-polymer
Hamiltonian RM(P,Q)) and

L[I]
M =

(M−1)/2
n=−(M−1)/2

ωn

(
Pn

∂

∂P−n
− Qn

∂

∂Q−n

)
. (20)

Note that the complete Liouvillian LM does not correspond
to a Hamiltonian in (P,Q) (because the transformation from
(P,Q) to (P,Q) is non-canonical), and that any resemblance
to RPMD5,6 is at this stage illusory, since the imaginary parts
of Pn, n , 0, contribute terms that cancel the spring terms in
L[RP]

M .
If we now try to shift Pn, n , 0, onto the real axis, we find

that the dynamics generated byLM propagates an initial distri-
bution of real phase-space points into the complex plane along
unstable trajectories. We do not know whether the contour-
integration trick remains valid for such trajectories; even if it
does, they appear to be at least as difficult to treat numerically
as the sign problem in Eq. (3).

However, it is possible14 to follow a path along which one
gradually moves Pn, n , 0, towards the real axis whilst grad-
ually discarding L[I]

M, such that the dynamics remains stable
(and the contour-integration trick remains valid) at every point
along the path. At the end of the path,L[I]

M has been completely
discarded, and Pn has reached the real axis. This results in the
approximation,

C[M ]
AB

(t) ≃ αM

2π~


dP


dQ A(Q)e−β RM(P,Q)eL

[RP]
M

tB(Q)
(21)

which is RPMD.5,6,18

A harmonic analysis14 shows that the main effect of dis-
carding L[I]

M is erroneously to shift the Matsubara fluctuation
frequencies to the ring-polymer frequencies. Since L[I]

M does
not act directly on Q0, it follows that a RPMD time-correlation
function involving linear operators (for which B(Q) = Q0 or
P0) will agree initially with the Matsubara result but will then
lose accuracy as the errors in the fluctuation dynamics couple to
the centroid through the anharmonicity in UM(Q). This result
is not a surprise, as the ring-polymer frequencies are known
to interfere with the centroid dynamics.6,17 What is new is that
we have identified the approximation made by RPMD, namely,
the neglect of L[I]

M.

V. DISCUSSION

We have shown that both CMD and RPMD are approx-
imations to Matsubara dynamics, which, as mentioned in the
Introduction, is probably the correct way to describe quantum
statistics and classical dynamics. CMD neglects the Matsubara
fluctuation term; RPMD neglects part of the Matsubara Liou-
villian. So far as we can tell, there is no direct physical justifica-
tion that can be given for either of these approximations. CMD
and RPMD are useful because, as has long been known,3–6 they
preserve detailed balance and satisfy a number of important
limits. These properties19 (and a few others) can be rederived
from Matsubara dynamics and are listed in Table I. Note also
that CMD and RPMD give the same t = 0 leading-order error
terms when compared with Matsubara dynamics as with the
exact quantum dynamics.20,21

One new finding, less drastic than it first appears, is that
both CMD and RPMD give qualitatively wrong fluctuation
dynamics at barriers. In Matsubara dynamics, some of the
distributions in q(τ) stretch indefinitely over the barrier top,
such that a proportion of the distribution ends up on either side.
In CMD and RPMD, all of the distribution ends up on one side
of the barrier (because CMD decouples the fluctuation modes
necessary for stretching over the barrier, and RPMD shifts the
frequencies of these modes from imaginary to real22). How-
ever, CMD and RPMD are still powerful tools for estimating
quantum reaction rates, as the exact t = 0 behaviour of these
methods (see Table I) ensures that classical rate theory (in the
mean-field centroid or ring-polymer space) gives lower bound
estimates of the t → 0+ quantum transition-state theory rate,23

for the special case of a centroid dividing-surface (CMD) and
for the general case (RPMD).
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TABLE I. Properties of CMD and RPMD derived from Matsubara dynamics (TCF= time-correlation function).

CMD RPMD

satisfies detailed balance, because the centroid mean-field force is decoupled
from the Matsubara fluctuations

satisfies detailed balance, because L[RP]
M and L[I]

M [in Eq. (18)] independently
satisfy detailed balance

is the centroid mean-field approximation to Matsubara dynamics has the same centroid mean-field approximation as Matsubara dynamics,
namely, CMD

is exact for linear TCFs in the harmonic limit, since the centroid mean-field
force is then equal to the Matsubara force

is exact for linear TCFs in the harmonic limit, since the neglected term L[I]
M

does not act on the centroid

gives the exact centroid-averaged Matsubara Liouvillian dynamics at t = 0 gives the exact Matsubara Liouvillian dynamics at t = 0

suffers from the curvature problem in vibrational spectra because of the
neglect of the Matsubara fluctuations

suffers from spurious resonances in vibrational spectra because the neglect of

L[I]
M shifts the fluctuation frequencies

gives the mean-field-averaged Matsubara force on the centroid gives the exact Matsubara force on the centroid

breaks down completely for non-linear Â and B̂ (see Fig. 1(b)) because

A(Q) and B(Q) depend on non-centroid modes

breaks down more rapidly for non-linear (than for linear) Â and B̂ (see

Fig. 1(b)) because the neglected term L[I]
M acts directly on the non-centroid

modes

The main new result of this work is that, in relating CMD
and RPMD to Matsubara dynamics, we have obtained explicit
formulae for the terms that are left out, which may lead to
improvements in these methods. For example, it might be
possible to include approximately the Matsubara fluctuation
term of Eq. (16) which is missing in CMD or to exploit the
property that RPMD gives the correct Matsubara force on the
centroid.24
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APPENDIX: MATSUBARA MODES

The set of M Matsubara modes Q is defined as2

Qn = lim
N→∞

1
√

N

N
l=1

Tlnql, n = 0,±1, . . . ,±(M − 1)/2,
(A1)

where M is odd2 and satisfies M ≪ N ; q ≡ {ql}, l = 1,N , are
a set of discrete path-integral coordinates distributed at equally
spaced intervals β~/N of imaginary time and

Tln =




N−1/2 n = 0
2/N sin(2πln/N) n = 1, . . . , (M − 1)/2
2/N cos(2πln/N) n = −1, . . . ,−(M − 1)/2

.

(A2)

The momentum coordinates P are similarly defined in terms
of p. Q0 and P0 are the position and momentum centroid
coordinates. We define the associated Matsubara frequencies
ωn = 2nπ/β~ such that they include the sign of n, which gives
θM(P,Q) the simple form of Eq. (6).

The functions A(Q) and B(Q) in Eq. (3) are obtained by
making the substitutions

ql =
√

N
(M−1)/2

n=−(M−1)/2

Tln
Qn (A3)

into the functions

A(q) = 1
N

N
l=1

A(ql), B(q) = 1
N

N
l=1

B(ql). (A4)

The Matsubara potential UM(Q) is obtained similarly by sub-
stituting for ql in the ring-polymer potential

UN(q) = 1
N

N
l=1

V (ql). (A5)

We emphasise that the formulae above and in Sec. II result
from just one approximation, namely, decoupling the Mat-
subara modes from the non-Matsubara modes in the exact
quantum Liouvillian (which causes all Liouvillian termsO(~2)
to vanish).2
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