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Boltzmann-conserving classical dynamics in quantum time-correlation
functions: “Matsubara dynamics”

Timothy J. H. Hele, Michael J. Willatt, Andrea Muolo,a) and Stuart C. Althorpeb)

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 12 February 2015; accepted 14 March 2015; published online 2 April 2015)

We show that a single change in the derivation of the linearized semiclassical-initial value repre-
sentation (LSC-IVR or “classical Wigner approximation”) results in a classical dynamics which
conserves the quantum Boltzmann distribution. We rederive the (standard) LSC-IVR approach by
writing the (exact) quantum time-correlation function in terms of the normal modes of a free
ring-polymer (i.e., a discrete imaginary-time Feynman path), taking the limit that the number of
polymer beads N → ∞, such that the lowest normal-mode frequencies take their “Matsubara” values.
The change we propose is to truncate the quantum Liouvillian, not explicitly in powers of ~2 at
~0 (which gives back the standard LSC-IVR approximation), but in the normal-mode derivatives
corresponding to the lowest Matsubara frequencies. The resulting “Matsubara” dynamics is inherently
classical (since all terms O(~2) disappear from the Matsubara Liouvillian in the limit N → ∞) and
conserves the quantum Boltzmann distribution because the Matsubara Hamiltonian is symmetric with
respect to imaginary-time translation. Numerical tests show that the Matsubara approximation to the
quantum time-correlation function converges with respect to the number of modes and gives better
agreement than LSC-IVR with the exact quantum result. Matsubara dynamics is too computationally
expensive to be applied to complex systems, but its further approximation may lead to practical
methods. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916311]

I. INTRODUCTION

Dynamical properties at thermal equilibrium are of central
importance to chemical physics.1,2 Sometimes these properties
can be simulated adequately by entirely classical means. But
there are plenty of cases, e.g., the spectrum of liquid water,3–5

hydrogen-diffusion on metals,6,7 and proton/hydride-transfer
reactions,8–13 for which one needs to evaluate time-correlation
functions of the form

1
Z

CAB(t) = 1
Z

Tr

e−βĤ Âei Ĥ t/~B̂e−i Ĥ t/~


(1)

(where Z is the partition function,14 β ≡ 1/kBT , Tr indicates a
complete sum over states, and the other notation is defined in
Sec. II). Such time-correlation functions are already approxi-
mate, since they employ the quantum Boltzmann distribution
e−βĤ/Z in place of the exact quantum-exchange statistics;
but this approximation is usually adequate (since the thermal
wavelength is typically much smaller than the separations be-
tween identical particles). What is less well understood is the
extent to which such functions can be further approximated by
replacing the exact quantum dynamics by classical dynamics
(whilst retaining the quantum Boltzmann statistics).

The standard way to make this approximation is to use
the linearized semiclassical-initial value representation (LSC-
IVR, sometimes called the “classical Wigner” approxima-
tion),3,15–27 in which the quantum Liouvillian is expanded as

a)Current address: Lab. für Physikalische Chemie, ETH Zürich, CH-8093
Zürich, Switzerland .

b)Author to whom correspondence should be addressed. Electronic mail:
sca10@cam.ac.uk

a power series in ~2, then truncated at ~0. Miller15,16 and later
Shi and Geva17 showed that this approximation is equivalent
to linearizing the displacement between forward and backward
Feynman paths in the exact quantum time-propagation, which
removes the coherences, thus making the dynamics classical.
The LSC-IVR retains the Boltzmann quantum statistics inside
a Wigner transform,26 is exact in the zero-time, harmonic
and high-temperature limits, and has been developed into a
practical method by several authors.19–23 However, it has a
serious drawback: the classical dynamics does not, in general,
preserve the quantum Boltzmann distribution, and thus the
quality of the statistics deteriorates over time.

A number of methods have been developed to get round
this problem, all of which appear to some extent to be ad
hoc. Some of these methods are obtained by replacing the
plain Newtonian dynamics in the LSC-IVR by an effective
(classical) dynamics which preserves the Boltzmann distri-
bution.28–30 Others, such as the popular centroid molecular
dynamics (CMD)31,32 and ring-polymer molecular dynamics
(RPMD),5,7–9,33–53 are more heuristic (and still not fully under-
stood) but have the advantage that they can be implemented
directly in classical molecular dynamics codes. An intriguing
property of CMD and RPMD is that, for some model sys-
tems (e.g., the one-dimensional quartic oscillator32,33), these
methods give better agreement than LSC-IVR with the exact
quantum result, even though, like LSC-IVR, they completely
neglect real-time quantum coherence.

This last point suggests that the failure of LSC-IVR to
preserve the quantum Boltzmann distribution may arise, not
from its neglect of quantum coherence but from its inclusion
of “rogue” components in the classical dynamics. The present

0021-9606/2015/142(13)/134103/13/$30.00 142, 134103-1 © 2015 AIP Publishing LLC
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paper develops a theory that supports this speculation. We
isolateacore,Boltzmann-conserving,classicaldynamics,which
we call “Matsubara dynamics” (for reasons to be made clear).
Matsubara dynamics is far too expensive to be used as a
practical method but is likely to prove useful in understanding
methods such as CMD and RPMD, and perhaps in developing
new approximate methods.

The paper is structured as follows. Section II gives key
background material including the well known “Moyal se-
ries” derivation of the LSC-IVR. Section III re-expresses
the standard results of Sec. II in terms of “ring-polymer”
coordinates, involving points along the imaginary-time path-
integrals that describe the quantum Boltzmann statistics. Sec-
tion IV gives the new results, showing that smooth Fourier-
transformed combinations of the ring-polymer coordinates
lead to an inherently classical dynamics which is quantum-
Boltzmann-conserving. Section V reports numerical tests on
one-dimensional models. Section VI concludes the article.

II. BACKGROUND THEORY

We start by defining the terms and notation to be used in
classical and quantum Boltzmann time-correlation functions
(Secs. II A and II B) and by writing out the standard Moyal-
series derivation of the LSC-IVR (Sec. II C).

A. Classical correlation functions

Without loss of generality, we can consider an F-dimen-
sional Cartesian system with position coordinates q ≡ q1, . . . ,
qF, momenta p, mass m, and Hamiltonian

H(p,q) = p2

2m
+ V (q). (2)

The thermal time-correlation function between observables
A(p,q), B(p,q) is then

cAB(t) = 1
(2π~)N


dp


dq e−βH (p,q)A(p,q)B(pt,qt), (3)

where


dp ≡
 ∞
−∞ dp1 . . .

 ∞
−∞ dpF (and similarly for q), and

pt ≡ pt(p,q, t) and qt ≡ qt(p,q, t) are the momenta and posi-
tions after the classical dynamics has evolved for a time t.

Alternatively, we can express B(pt,qt) as a function of the
initial phase-space coordinates (p,q),

B(pt,qt) ≡ B[pt(p,q, t),qt(p,q, t)] ≡ B(p,q, t), (4)

such that

cAB(t) = 1
(2π~)N


dp


dq e−βH (p,q)A(p,q)B(p,q, t)

=
1

(2π~)N


dp


dq e−βH (p,q)A(p,q)eLF tB(p,q,0),
(5)

where the (classical) Liouvillian LF is54

LF =
1
m

p · ∇q − V (q)←−∇q ·
−→
∇p (6)

with

∇q =

*.......
,

∂

∂q1
...
∂

∂qF

+///////
-

, (7)

and the arrows indicate the direction in which the derivative
operator is applied (and the backward arrow indicates that the
derivative is taken only of V (q)—not of any terms that may
precede V (q) in any integral). Equation (5) is less practical than
Eq. (3) (which propagates individual trajectories rather than
the distribution function B(p,q, t)) but is better for comparison
with the exact quantum expression.

An essential property of the dynamics is that it preserves
the (classical) Boltzmann distribution, which follows because
H(p,q) is a constant of the motion. As a result, we can rear-
range Eq. (5) as

cAB(t) = 1
(2π~)N


dp


dq e−βH (p,q)

×
�
e−LF t A(p,q)� B(p,q,0) (8)

showing that cAB(t) satisfies

cAB(t) = cBA(−t) (9)

which is the detailed balance condition.

B. Quantum correlation functions

For clarity of presentation, we will derive the results in
Secs. III and IV for a one-dimensional quantum system with
Hamiltonian Ĥ = T̂ + V̂ , kinetic energy operator T̂ = p̂2/2m,
potential energy operator V̂ = V (q̂), position and momentum
operators q̂, p̂, and mass m. However, the results we derive in
Secs. III and IV are applicable immediately to systems with
any number of dimensions (see Sec. IV D).

The simplest form of quantum-Boltzmann time-correla-
tion function is that given in Eq. (1), but CAB(t) is difficult to
relate to the classical time-correlation function cAB(t), because
it does not satisfy Eq. (9) and is not, in general, real. We there-
fore use the Kubo-transformed time-correlation function33

CAB(t) = Tr

Kβ(Â) ei Ĥ t/~B̂e−i Ĥ t/~


(10)

with

Kβ(Â) = 1
β

 β

0
dλ e−λĤ Âe−(β−λ)Ĥ . (11)

This function gives an equivalent description of the dynamics
to CAB(t), to which it is related by a simple Fourier-transform
formula.33

It is easy to show (by noting that e−λĤ and e−i Ĥ t/~ com-
mute in Eq. (11)) that CAB(t) satisfies the detailed balance
relation

CAB(t) = CBA(−t). (12)

This relation also ensures that CAB(t) is real (since reversing
the order of operators in the trace gives CAB(t) = C∗BA(−t)).

The t = 0 limit of CAB(t) can be expressed33 in terms of a
classical Boltzmann distribution over an extended phase space
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of “ring-polymers.”55–58 When Â and B̂ are functions A(q̂) and
B(q̂) of the position operator q̂, the ring-polymer expression is

CAB(0) = lim
N→∞

1
(2π~)N


dp


dqA(q)B(q)e−βNRN (p,q),

(13)

where βN = β/N ,


dp ≡
 ∞
−∞ dp1 . . .

 ∞
−∞ dpN and similarly

for


dq and

A(q) = 1
N

N
i=1

A(qi), B(q) = 1
N

N
i=1

B(qi), (14)

RN(p,q) = TN(p,q) +UN(q), (15)

TN(p,q) = p2

2m
+

m
2(βN~)2

N
i=1

(qi+1 − qi)2, (16)

UN(q) =
N
i=1

V (qi). (17)

Similar expressions can be obtained when Â and B̂ depend
on the momentum operator (by inserting position-momentum
Fourier-transforms). To avoid confusion, we emphasise that
Eq. (13) is exact at t = 0, and that we do not assume that the
ring-polymer Hamiltonian RN(p,q) generates the dynamics at
t > 0.

C. The LSC-IVR approximation

1. The Wigner-Moyal series

To derive the LSC-IVR approximation to CAB(t), we
follow Ref. 26, expanding the exact quantum Liouvillian in
powers of ~2. We start by rewriting Eq. (10) as

CAB(t) =
 ∞

−∞
dq

 ∞

−∞
d∆⟨q − ∆/2|Kβ(Â)|q + ∆/2⟩

× ⟨q + ∆/2|ei Ĥ t/~B̂e−i Ĥ t/~|q − ∆/2⟩, (18)

then insert the momentum identity

δ(∆ − ∆′) = 1
2π~

 ∞

−∞
dp ei p(∆−∆

′)/~ (19)

to obtain

CAB(t) = 1
2π~

 ∞

−∞
dq

 ∞

−∞
dp[Kβ(Â)]W(p,q) [B̂(t)]W(p,q),

(20)

where the Wigner transforms of Â and B̂ are given by

[Kβ(Â)]W(p,q) =
 ∞

−∞
d∆ei p∆/~

× ⟨q − ∆/2|Kβ(Â)|q + ∆/2⟩ (21)

and

[B̂(t)]W(p,q) =
 ∞

−∞
d∆ ei p∆/~

× ⟨q − ∆/2|ei Ĥ t/~B̂e−i Ĥ t/~|q + ∆/2⟩ (22)

(and note that we will often suppress the (p,q) dependence of
[Kβ(Â)]W and [B̂(t)]W).

We then differentiate Eq. (20) with respect to t,

dCAB(t)
dt

=
1

2π~

 ∞

−∞
dq

 ∞

−∞
dp[Kβ(Â)]W


i
~
[Ĥ , B̂(t)]



W
(23)

and expand the potential-energy operator in the commutator in
powers of ∆ to obtain


i
~
[Ĥ , B̂(t)]



W
=

 ∞

−∞
d∆ ei p∆/~ℓ̂⟨q − ∆/2|B̂(t)|q + ∆/2⟩

(24)

with

ℓ̂ =
i~
m

∂

∂q
∂

∂∆
− 2i
~

∞
λ=1,odd

1
λ!

∂λV (q)
∂qλ

(
∆

2

)λ
. (25)

Noting that each power of∆ can be generated by an application
of −i~∂/∂p, we then obtain

dCAB(t)
dt

=
1

2π~

 ∞

−∞
dq

 ∞

−∞
dp[Kβ(Â)]W L̂[B̂(t)]W (26)

with

L̂ =
p
m

∂

∂q
−

∞
λ=1,odd

1
λ!

(
i~
2

)λ−1
∂λV (q)
∂qλ

∂λ

∂pλ
. (27)

This is the Moyal expansion of the quantum Liouvillian in
powers of ~2. If all terms are included in the series, then the
application of L̂ generates the exact quantum dynamics (as is
easily proved by working backwards through the derivation
just given). A compact representation of L̂ which will be useful
later on is

L̂ =
p
m

∂

∂q
− V (q)2

~
sin *

,

←−
∂

∂q
~

2

−→
∂

∂p
+
-
, (28)

where the arrows are defined in the same way as in Eq. (6).

2. Approximating the dynamics

To obtain the LSC-IVR, one notes that Eq. (27) can be
written as

L̂ = L + O(~2), (29)

where L is the classical Liouvillian

L = p
m

∂

∂q
− ∂V

∂q
∂

∂p
(30)

and then truncates L̂ at ~0. The LSC-IVR thus amounts to
replacing the quantum dynamics by classical dynamics, such
that CAB(t) is approximated by

CW
AB(t) =

 ∞

−∞
dq

 ∞

−∞
dp[Kβ(Â)]W(p,q) eLt[B̂(0)]W(p,q)

(31)

or equivalently

CW
AB(t) =

 ∞

−∞
dq

 ∞

−∞
dp[Kβ(Â)]W(p,q) [B̂(0)]W(pt,qt),

(32)

where (pt,qt) are the (classical) position and momentum at
time t of a trajectory initiated at (p,q) at t = 0.
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Physical insight into the LSC-IVR is obtained by going
back to Eq. (25) and noting that truncating L̂ at ~0 is equiv-
alent to truncating l̂ at ∆. Since ∆ is the difference between
the origin of a forward path that terminates at z (at time t)
and the terminus of a backward path that originates at z, it
follows that truncating at ∆ is equivalent to linearizing the
difference between the forward and backward Feynman paths
at each time-step. Hence the neglect of terms O(~2) is valid
if the forward and backward paths are very close together,
in which case there are no coherence effects, and the dy-
namics becomes classical. The LSC-IVR is thus exact at t
= 0 (where the paths become infinitesimally short), in the
harmonic limit (where the are no terms O(~2) in L̂), and in the
high temperature limit (where fluctuations in ∆ efficiently de-
phase).59

Despite these positive features, LSC-IVR suffers from the
major drawback of not preserving the quantum Boltzmann
distribution (except in one of the special limits just mentioned),
since in general

L[e−βĤ]W , 0. (33)

As a result,

CW
AB(t) , CW

BA(−t), (34)

i.e., the LSC-IVR does not satisfy detailed balance. In Secs.
III–V, we will investigate why this is so.

III. RING-POLYMER COORDINATES

We now recast the standard expressions of Sec. II in
terms of ring-polymer coordinates. No new approximations are
obtained, but the ring-polymer versions of these expressions
are needed for use in Sec. IV, where they will be used to
derive the quantum-Boltzmann-conserving “Matsubara” dy-
namics.

A. Ring-polymer representation of Kubo-transformed
time-correlation functions

1. Exact quantum time-correlation function

Following Ref. 48 (see also Refs. 17 and 41), we define
the ring-polymer quantum time-correlation function to be

C[N ]
AB

(t) =


dq


d∆


dz A(q)B(z)

×
N
l=1

⟨ql−1 − ∆l−1/2|e−βN Ĥ |ql + ∆l/2⟩

× ⟨ql + ∆l/2|e−i Ĥ t/~|zl⟩⟨zl |ei Ĥ t/~|ql − ∆l/2⟩, (35)

where the functions A(q) and B(z) (with z in place of q) are
defined in Eq. (14) (and we have assumed that Â and B̂ are
functions of position operators to simplify the algebra—see
Sec. IV D). It is easy to show (by noting that N − 1 of all the
forward-backward propagators are identities, and that the sums
in A(q) and B(z) become integrals in the limit N → ∞) that

CAB(t) = lim
N→∞

C[N ]
AB

(t). (36)

In other words, Eq. (35) in the limit N → ∞ is just an alterna-
tive way of writing out the standard Kubo-transformed time-
correlation function CAB(t). The advantage of Eq. (35) is that
it emphasises the symmetry of the entire path-integral expres-
sion with respect to cyclic permutations of the coordinates ql
→ ql+1 (see Fig. 1); this symmetry is otherwise hidden in the
conventional expression for CAB(t) [Eq. (10)].

2. Ring-polymer representation of the LSC-IVR

It is straightforward to derive the LSC-IVR approximation
from Eq. (35) by generalizing the steps in Sec. II C. We insert
an identity

δ(∆l − ∆′l) =
1

2π~

 ∞

−∞
dpl ei pl(∆l−∆

′
l
)/~, (37)

for each value l = 1, . . . ,N , to obtain

C[N ]
AB

(t) = 1
(2π~)N


dq


dp


e−βĤ Â


N
(p,q) �B̂(t)�

N
(p,q), (38)

where


e−βĤ Â


N
(p,q) =


d∆ A(q)

N
l=1

⟨ql−1 − ∆l−1/2|e−βN Ĥ |ql + ∆l/2⟩ei pl∆l/~ (39)

and

�
B̂(t)�

N
(p,q) =


d∆


dz B(z)

N
l=1

⟨ql − ∆l/2|e−i Ĥ t/~|zl⟩⟨zl |ei Ĥ t/~|ql + ∆l/2⟩ei pl∆l/~ (40)

are generalized Wigner transforms (and we will often suppress
the dependence on (p,q) in what follows). Note that [·]N and
[·]N have different forms: [·]N is a sum of products of one-
dimensional Wigner transforms, whereas [·]N is more compli-
cated, with each product coupling variables in l and l + 1.60

Note that since we have specified that B̂ is a function of just
the position operator (in order to simplify the algebra—see

Sec. IV D), it follows that
�
B̂(0)�

N
(p,q) = B(q). (41)

The next step is to obtain the ring-polymer representation
of the (exact) quantum Liouvillian, which involves a straight-
forward generalization of Eqs. (23)-(27). We differentiate
C[N ]

AB
(t) with respect to t, obtain a sum of N Heisenberg
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FIG. 1. Schematic diagram showing the structure of the (exact) Kubo-
transformed quantum time-correlation function when represented in ring-
polymer coordinates as in Eq. (35). The red and blue dots represent the
coordinates ql and zl; solid lines represent stretches of imaginary time of
length βN~; arrows represent forward-backward propagations in real time.

time-derivatives, and expand each member in powers of ∆l
to obtain an N-fold generalization of Eqs. (24) and (25). On
replacing powers of ∆l by powers of −i~∂/∂pl, we obtain

dC[N ]
AB

(t)
dt

=
1

(2π~)N


dq


dp

e−βĤ Â


N

L̂N

�
B̂(t)�

N
,

(42)

where

L̂N =

N
l=1

pl
m

∂

∂ql
− V (ql)2

~
sin *

,

←−
∂

∂ql

~

2

−→
∂

∂pl
+
-
, (43)

and the arrow notation is as used in Eq. (6). We can write this
expression more compactly in terms of UN(q) in Eq. (17) as

L̂N =
1
m

p · ∇q −UN(q)2
~

sin
(
~

2
←−
∇q ·
−→
∇p

)
(44)

(since all mixed derivatives of UN(q) are zero).
Following Sec. II C, we then truncate the exact Liouvillian

at ~0 such that

L̂N = LN + O(~2) (45)

with

LN =

N
l=1

pl
m

∂

∂ql
− ∂V (ql)

∂ql

∂

∂pl
. (46)

The ring-polymer version of LSC-IVR thus approximates the
exact dynamics by the classical dynamics of N independent
particles, each initiated at a phase-space point (pl,ql). The ring-
polymer LSC-IVR time-correlation function is

CW[N ]
AB

(t) = 1
(2π~)N


dq


dp


e−βĤ Â


N

eLN t
�
B̂(0)�

N

=
1

(2π~)N


dq


dp

e−βĤ Â


N


B̂(0)

N
(pt,qt),

(47)

where
�
B̂(0)�

N
(pt,qt) indicates that this Wigner transform

takes its t = 0 form but is expressed as a function of the
momenta and positions (pt,qt) of the N independent particles
at time t. It is easy to show (by noting that one can integrate
out N − 1 of the pl) that

C[W]
AB

(t) = lim
N→∞

CW[N ]
AB

(t), (48)

i.e., that the truncation of L̂N at ~0 gives the standard LSC-
IVR approximation in the limit N → ∞ (as would be expected,
since we have approximated the exact quantum Kubo time-
correlation function of Eqs. (35) and (36) by truncating the
quantum Liouvillian at ~0).

B. Normal mode coordinates

1. Definition

The advantage of ring-polymer coordinates is that we can
now transform to sets of global coordinates describing collec-
tive motion of the individual coordinates (pl,ql,∆l). The choice
of global coordinates is not unique. We will find it convenient
to use the normal modes of a free ring-polymer,36,47 namely, the
linear combinations of ql that diagonalize TN(p,q) of Eq. (16).
These are simply discrete Fourier transforms, which for odd N
(which we will assume to simplify the algebra61), are

Qn =

N
l=1

Tlnql, n = 0,±1, . . . ,±(N − 1)/2, (49)

where

Tln =




N−1/2 n = 0
2/N sin(2πln/N) n = 1, . . . , (N − 1)/2
2/N cos(2πln/N) n = −1, . . . ,−(N − 1)/2

(50)

and similarly for Pn in terms of pl, and Dn in terms of ∆l. The
associated normal frequencies take the form

ωn =
2

βN~
sin

( nπ
N

)
(51)

such that the ring-polymer expression for CAB(0) [Eq. (13)]
can be rewritten as

CAB(0)
= lim

N→∞

1
(2π~)N


dP


dQA(Q)B(Q)e−βNRN (P,Q),

(52)

where the normal-mode expression for the ring-polymer Ham-
iltonian RN(P,Q) is

RN(P,Q) = *.
,

(N−1)/2
n=−(N−1)/2

P2
n

2m
+

m
2
ω2

nQ2
n
+/
-
+UN(Q) (53)

and A(Q), B(Q), and UN(Q) are obtained by making the substi-
tution

ql =
(N−1)/2

n=−(N−1)/2

TlnQn (54)

into A(q), B(q), and UN(q) of Eqs. (14)-(17). Note the defini-
tion of the sign of ωn in Eq. (51), which results in somewhat
neater expressions later on. Note also that RN(P,Q) will not be
used to generate the dynamics in any of the expressions derived
below which, like the dynamics of Sec. III A, will involve N
independent particles unconnected by springs.
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2. Time-correlation functions

It is straightforward to convert Eq. (38) into normal mode
coordinates using the orthogonal transformations in Eq. (54)
to obtain

C[N ]
AB

(t) = 1
(2π~)N


dP


dQ

×

e−βĤ Â


N
(P,Q)�B̂(t)�

N
(P,Q), (55)

where 
dP ≡

(N−1)/2
n=−(N−1)/2

 ∞

−∞
dPn, (56)

and


dQ is similarly defined. The generalized Wigner trans-
forms in Eq. (55) are obtained using Eq. (54) to substitute
(P,Q,D) for (p,q,∆) in Eqs. (39) and (40) and thus contain
products of exp(iPnDn/~) in place of exp(ipl∆l/~). At t = 0,
one obtains

�
B̂(0)�

N
(P,Q) = B(Q), (57)

where B(Q) is obtained by substituting Q for q in B(q) of
Eq. (14).

The (exact) quantum dynamics is described by

dC[N ]
AB

dt
(t) = 1

(2π~)N


dP


dQ

e−βĤ Â


N

L̂N

�
B̂(t)�

N
,

(58)

where the Liouvillian L̂N is obtained by expressing L̂N of
Eq. (46) in terms of normal modes, which gives

L̂N =
1
m

P · ∇Q −UN(Q)2
~

sin
(
~

2
←−
∇Q ·

−→
∇P

)
(59)

in which UN(Q) is obtained by substituting Q for q in UN(q)
of Eq. (17).

As in Sec. III A, the LSC-IVR dynamics is obtained by
truncating L̂N at ~0 to give

LN =

(N−1)/2
n=−(N−1)/2

Pn

m
∂

∂Qn
− ∂UN(Q)

∂Qn

∂

∂Pn
(60)

after which one obtains CW[N ]
AB

(t) in terms of normal modes,
which gives the (standard) LSC-IVR result in the limit N → ∞,
according to Eq. (48). Hence all we have done in Eqs. (55)-(60)
is to re-express the results of Sec. III A in terms of normal mode
coordinates. The advantages of doing this will become clear
shortly.

C. Matsubara modes

We now consider the M lowest frequency ring-polymer
normal modes in the limit N → ∞, such that M ≪ N . The
frequencies ωn tend to the values

ωn = lim
N→∞

ωn =
2nπ
β~

, |n| ≤ (M − 1)/2, (61)

which are often referred to as the “Matsubara frequencies,”62

and so we will refer to these M modes in the limit N → ∞ as
the “Matsubara modes.” The Matsubara modes have the special

FIG. 2. Schematic diagram showing that superpositions of Matsubara modes
give distributions of path-integral coordinates ql which are smooth, differen-
tiable functions of imaginary time τ. Inclusion of non-Matsubara modes gives
jagged distributions.

property that any superposition of them produces a distribution
of the coordinates ql which is a smooth and differentiable
function of imaginary time τ, such that

ql = q(τ), τ = βN~ l, l = 1, . . . ,N (62)

(see Appendix A). Hence distributions made up of superposi-
tions of the Matsubara modes resemble the sketch in Fig. 2. We
will often write the Matsubara modes using the notation

Qn = lim
N→∞

Qn√
N
, n = 0,±1, . . . ,±(M − 1)/2 (63)

(and similarly for Pn, Dn). The extra factor of N−1/2 ensures
that Qn scales as N0 and converges in the limit N → ∞; e.g., Q0
is the centroid (centre of mass) of the smooth distribution
q(τ). We will refer to the other N − M normal modes as the
“non-Matsubara modes.” In general, these modes give rise to
jagged (i.e., non-smooth, non-differentiable with respect to τ)
distributions of ql (see Fig. 2).63

Matsubara modes have a long history57,58,64,65 in path-
integral descriptions of equilibrium properties, since they give
rise to an alternative ring-polymer expression for CAB(0). If we
define

C[M ]
AB

(0) = αM

2π~


dP


dQ A(Q)B(Q)e−β RM(P,Q) (64)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.111.115.85 On: Tue, 07 Apr 2015 11:20:51



134103-7 Hele et al. J. Chem. Phys. 142, 134103 (2015)

with

RM(P,Q) = *.
,

(M−1)/2
n=−(M−1)/2

P2
n

2m
+

m
2
ω2
n
Q2
n
+/
-
+ UM(Q), (65)

UM(Q) = lim
N→∞

1
N

N
l=1

V *.
,

(M−1)/2
n=−(M−1)/2

Tln

√
N Qn

+/
-
, (66)

αM = ~
(1−M ) [(M − 1)/2] !2, (67)

then

CAB(0) = lim
M→∞
M≪N

C[M ]
AB

(0), (68)

where this limit indicates that M is allowed to tend to infinity,
subject to the condition that it is always much smaller than N ,
such that the Q remain Matsubara modes. In practice, a good
approximation to the exact result is reached once ω(M−1)/2
exceeds the highest frequency in the potential V (q). Equa-
tion (64) is less often used nowadays to compute static prop-
erties, because the convergence with respect to M is typically
slower than the convergence of Eq. (13) with respect to N .65

However, Eq. (64) tells us something interesting: The
Boltzmann factor ensures that only smooth distributions of
(p,q) survive in CAB(t) at t = 0; but at t > 0, the force terms in
LN [Eq. (60)] will, in general, mix in an increasing proportion
of non-smooth, non-Matsubara modes, so that the distributions
of (p,q) become increasingly jagged as time evolves. The rate
at which this mixing occurs depends on the anharmonicity of
the potential V (q). In the special case that V (q) is harmonic,
there is no coupling between different normal modes, so the
distributions in (p,q) remain smooth for all time. In other
words, smooth distributions in (p,q) are found in two of the
limits (zero-time and harmonic) in which the LSC-IVR is
known to be exact.

IV. MATSUBARA DYNAMICS

A. Definition

The results of Sec. III C suggest that there may be a con-
nection between smoothness in imaginary time and classical
dynamics. We now investigate what happens if we constrain
an initially smooth function of phase space coordinates (p,q)
to remain smooth for all (real) times t > 0. We take the (exact)
quantum Liouvillian L̂N , and instead of truncating at ~0 as in
Eq. (60) (which gives the LSC-IVR), we retain all powers of
~2, take the N → ∞ limit, and split L̂N into

lim
N→∞

L̂N = LM + lim
N→∞

L̂error(N,M), (69)

where the “Matsubara Liouvillian”

LM = lim
N→∞

(M−1)/2
n=−(M−1)/2

Pn

m
∂

∂Qn

−UN(Q)2
~

sin *.
,

(M−1)/2
n=−(M−1)/2

~

2

←−
∂

∂Qn

−→
∂

∂Pn

+/
-

(70)

contains all terms in which the derivatives involve only the
Matsubara modes, and L̂error(N,M) contains the rest of the
terms (given in Appendix B). We then discard L̂error(N,M),
approximating L̂N by LM. We will refer to the (approximate)
dynamics generated by LM as “Matsubara dynamics.” By
construction, Matsubara dynamics ensures that a distribution
of (p,q) which is a smooth and differentiable function of τ at
t = 0 will remain so for all t > 0.

The time-correlation function corresponding to Matsub-
ara dynamics is

C[M ]
AB

(t) = lim
N→∞

1
(2π~)N


dP


dQ


e−βĤ Â


N

eLM t
�
B̂(0)�

N
.

(71)

We can obtain an explicit form for C[M ]
AB

(t) by taking the same
limit as in Eq. (68), allowing M to tend to infinity, subject to
M ≪ N , which gives (see Appendix C)

CMats
AB (t) = lim

M→∞
M≪N

C[M ]
AB

(t), (72)

where

C[M ]
AB

(t) = αM

2π~


dP


dQ A(Q)e−β[ HM(P,Q)−iθM(P,Q)]

× eLM tB(Q) (73)

in which the Matsubara Hamiltonian is

HM(P,Q) = P2

2m
+ UM(Q) (74)

and the phase factor is

θM(P,Q) =
(M−1)/2

n=−(M−1)/2

Pnωn
Q−n, (75)

with αM, ωn, P, and Q defined in Sec. III C. Note that,
in deriving these equations (in Appendix C), we have not
proved that C[M ]

AB
(t) converges with M for t > 0 (only that

the form of Eqs. (73)-(75) converges with M). We test this
convergence numerically in Sec.V.

Thus when the exact dynamics is approximated by Mat-
subara dynamics, the quantum Boltzmann distribution takes the
simple form of a classical Boltzmann distribution multiplied
by a phase factor. At t = 0, one may analytically continue the
phase factor (by making Pn → Pn − imωnQ−n) to recover the
ring-polymer distribution in Eq. (64). However, it is not known
whether this analytic continuation is valid at t > 0 (except for
the special case of the harmonic oscillator), and hence the most
general form of quantum Boltzmann distribution (in the space
of Matsubara modes) is the one given in Eq. (73).

B. Matsubara dynamics is classical

We now rewrite LM in terms of (P,Q), to make explicit
its dependence on N , and we also assume that M is sufficiently
large that Eq. (73) holds, allowing us to replace UN(Q)/N by
UM(Q). This gives

LM = lim
N→∞

1
m
P · ∇Q − UM(Q)2N

~
sin

(
~

2N
←−
∇Q ·

−→
∇P

)
.

(76)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.111.115.85 On: Tue, 07 Apr 2015 11:20:51



134103-8 Hele et al. J. Chem. Phys. 142, 134103 (2015)

In other words, the Moyal series in Matsubara space66 is an
expansion in terms of (~/N)2, rather than ~2. Now, it is well
known27 that the smallness of ~ cannot, in general, be used
to justify truncating the (standard LSC-IVR) Moyal series of
Eq. (27) at ~0, since at least one of the Wigner transforms in the
time-correlation function [Eq. (20)] contains derivatives that
scale as ~−1. However, it is easy to show that the derivatives of
all terms in the integral in Eq. (73) scale as N0. As a result, it
follows that all derivatives higher than first order inLM vanish
in the limit N → ∞, with the result that

LM =

(M−1)/2
n=−(M−1)/2

Pn

m
∂

∂Qn

− ∂UM(Q)
∂Qn

∂

∂Pn

. (77)

In other words, Matsubara dynamics is classical.
This is a surprising result, which needs to be interpreted

with caution. It does not mean that the dependence of B(Q) on
the Matsubara modes evolves classically in the exact quantum
dynamics, since the exact Liouvillian L̂N contains deriva-
tive terms that couple the Matsubara modes with the non-
Matsubara modes (for which the higher-order derivatives
cannot be neglected): it means that the dynamics of the Mat-
subara modes becomes classical when they are decoupled from
the non-Matsubara modes.

One way to understand the origin of the ~/N in Eq. (76) is
to note that the Fourier transform between Pn and Dn (in the
Wigner transforms of Eqs. (39) and (40)) is exp(iN Pn

Dn/~).
Hence the effective Planck’s constant associated with motion
in the Matsubara coordinates tends to zero in the limit N → ∞.
Note that the dependence of the Boltzmann distribution on
the non-Matsubara modes is more complicated than that of
Eq. (73) and contains powers of (~/N)−1 which cancel out the
powers of (~/N) in L̂N (which must obviously happen, since
we know that the exact dynamics is not in general classical).

Matsubara dynamics thus has many features in common
with LSC-IVR: it is exact in the t = 0 limit (when all distribu-
tions of (p,q) are smooth superpositions of Matsubara modes),
in the harmonic limit (where the dynamics of the Matsubara
modes is decoupled from that of the non-Matsubara modes),
and in the classical limit (since setting M = 0 in Eq. (73)
gives the classical time-correlation function); and it neglects all
termsO(~2) in the (exact) quantum Liouvillian. However, Mat-
subara dynamics differs from LSC-IVR in that it also neglects
the terms O(~0) that contain derivatives in the non-Matsubara
modes. One can thus regard Matsubara dynamics as a filtered
version of LSC-IVR, in which the parts of the dynamics that
cause the smooth distributions of (p,q) to become jagged have
been removed.67

C. Conservation of the quantum Boltzmann
distribution

Confining the dynamics to the space of Matsubara modes
has a major effect on the symmetry of the Hamiltonian. The
LSC-IVR Hamiltonian HN(P,Q) is simply the classical Hamil-
tonian of N independent particles and is thus symmetric with
respect to any permutation of the phase space coordinates
[e.g., (p1,q1)↔ (p3,q3)]. On restricting the dynamics to the
Matsubara modes, most of these symmetries are lost (since

individual permutations would destroy the smoothness of
the distributions of (p,q)). However, one operation which is
retained68 is symmetry with respect to cyclic permutation of the
coordinates, which, on restricting the dynamics to Matsubara
space, becomes a continuous, differentiable symmetry, namely,
invariance with respect to translation in imaginary time,

d HM(P,Q)
dτ

= 0 (78)

(see Appendix A). It thus follows from Noether’s theorem69

that

dΛM(P,Q)
dτ

=
d
dt

*.
,

(M−1)/2
n=−(M−1)/2

Pn
dQn

dτ
+/
-
= 0, (79)

where ΛM(P,Q) is the Matsubara Lagrangian. In other words,
in Matsubara dynamics, there exists a constant of the motion
(in addition to the total energy) which is given by the term in
brackets above.

In Appendix A, it is shown that the phase θM(P,Q) in
the quantum Boltzmann distribution [Eqs. (73)-(75)] can be
written as

θM(P,Q) = −
(M−1)/2

n=−(M−1)/2

Pn
dQn

dτ
(80)

and is thus the constant of the motion associated with the
invariance of HM(P,Q) to imaginary time-translation. Since
HM(P,Q) is of course also a constant of the motion, it follows
that Matsubara dynamics conserves the quantum Boltzmann
distribution.

As a result, Matsubara dynamics satisfies the detailed
balance relation

C[M ]
AB

(t) = C[M ]
BA

(−t) (81)

and gives expectation values



B̂
�[M ](t) = αM

2π~


dP


dQ

× e−β[ HM(P,Q)−iθM(P,Q)]B(Qt)
=

αM

2π~


dPt


dQt

× e−β[ HM(Pt,Qt)−iθM(Pt,Qt)]B(Qt)
=

αM

2π~


dPt


dQt

× e−β RM(Pt,Qt)B(Qt)
=


B̂
�[M ](0), (82)

which are independent of time (and equal to the exact quan-
tum result in the limit M → ∞; see Eq. (68)). Note that the
step between the second and third lines follows from analytic
continuation (Pn → Pn − imωnQ−n).

We thus have the surprising result that a purely classical
dynamics (Matsubara dynamics), which uses the smoothed
Hamiltonian that arises naturally when the space is restricted
to Matsubara modes, conserves the quantum Boltzmann distri-
bution. At first sight, this may appear counter-intuitive. For
example, it is clear that the classical dynamics will not respect
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zero-point energy constraints nor will it be capable of tunnel-
ling. However, it is the phase θM(P,Q) which converts what
would otherwise be a classical Boltzmann distribution in an
extended phase-space into a quantum Boltzmann distribution,
and the phase is conserved.

D. Generalizations

The derivations above can easily be generalized to systems
with any number of dimensions. For a system whose classical
Hamiltonian resembles Eq. (2), there are F × M Matsubara
modes, one set of M modes in each dimension. All the steps
in Secs. III and IV A-IV C are then the same, except that, with
F dimensions instead of one, there is now a sum of F phase
terms, each resembling θM(P,Q). Noether’s theorem shows
that the sum of these terms and hence the quantum Boltzmann
distribution is conserved.

We emphasise that the derivations above were carried out
for operators Â and B̂ in CAB(t) which are general functions of
the coordinate operators q̂. Matsubara dynamics is, therefore,
not limited to correlation functions involving linear operators
of position. The derivations can also be repeated, with minor
modifications in the algebra, for the case that Â and B̂ are
general functions of the momentum operator (which results
in functions of P appearing in the generalised Wigner trans-
forms).

V. NUMERICAL TESTS OF THE EFFICACY
OF MATSUBARA DYNAMICS

So far we have made no attempt to justify the use of
Matsubara dynamics, beyond pointing out that it is exact in all
the limits in which LSC-IVR is exact, but that, unlike LSC-
IVR, it also conserves the quantum Boltzmann distribution.
Here we investigate whether Matsubara dynamics converges
with respect to the number of modes M , and make numerical
comparisons with the LSC-IVR, CMD, and RPMD methods.

The presence of the phase θM(P,Q) in the Boltzmann
distribution [Eq. (73)] means that Matsubara dynamics suf-
fers from the sign problem and thus cannot be used as a
practical method. However, we were able to evaluate C[M ]

qq (t)
(i.e., C[M ]

AB
(t) of Eq. (73) with Â = q̂, B̂ = q̂) for some one-

dimensional model systems. For consistency with previous
work,32,33 we considered the quartic potential

V (q) = 1
4

q4 (83)

and the weakly anharmonic potential

V (q) = 1
2

q2 +
1
10

q3 +
1

100
q4, (84)

where atomic units are used with m = 1. Calculations us-
ing potentials with intermediate levels of anharmonicity were
found to give similar results (and are not shown here).

Figure 3 shows C[M ]
qq (t) for the quartic potential, at an in-

verse temperature of β = 2 a.u., for various values of M . These
results were obtained by propagating classical trajectories us-
ing the Matsubara potential UM(Q) to generate the forces, sub-
ject to the Anderson thermostat2 (according to which each Pn

FIG. 3. Convergence with respect to number of modes M of the Matsubara
position auto-correlation function C

[M ]
qq (t), calculated for the quartic po-

tential of Eq. (83), at a reciprocal temperature of β = 2 a.u. The red lines
correspond to M = 1 (dots), 3 (chains), 5 (dashes), and 7 (solid). The solid
black line is the exact quantum result.

was reassigned to a value drawn at random from the classical
Boltzmann distribution every 2 atomic time units); UM(Q)was
computed by taking the N → ∞ limit analytically, as described
in the supplementary material.70 A total of 1011 Monte Carlo
points were found necessary to converge C[M ]

qq (t). Extending
these calculations beyond M = 7 was prohibitively expensive,
and the final few M were particularly difficult to converge
(since θM(P,Q) becomes increasingly oscillatory as ωn in-
creases). Nevertheless, the results in Fig. 3 are sufficient to
show that C[M ]

qq (t) converges with respect to M , although the
convergence appears to become slower as t increases. For the
weakly anharmonic potential, convergence to within graphical
accuracy was obtained using M = 5 for β = 2 a.u.

We also confirmed numerically that Matsubara dynamics
conserves the quantum Boltzmann distribution. Figure 4 shows
the phase θM(P,Q) as a function of time along a Matsub-
ara trajectory. When a coarse number of polymer beads (N
= 5) is used, such that the M lowest-frequency modes are a
poor approximation to the Matsubara modes, the phase is not
conserved; however, as N is increased, the variation of the
phase along the trajectory flattens, becoming completely time-
independent in the limit N → ∞. Figure 5 plots the expectation
value



q2�[M ](t), which is found to be time-independent as

expected from Eq. (82).
Figure 6 compares the Matsubara correlation functions

C[M ]
qq (t) for both potentials with exact quantum, LSC-IVR,

FIG. 4. Evolution of the phase θM(P,Q) along a single classical trajectory on
the quartic potential, with M = 5, and N = 5 (dots), 9 (dashes), and ∞ (solid
line). The latter corresponds to Matsubara dynamics in which the phase is
conserved.
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FIG. 5. Time-dependence of the thermal expectation value


q2�(t) for the

quartic potential at β = 2, computed using LSC-IVR (blue), and Matsubara
dynamics (red: M = 1 (dots), 3 (dashes), 5 (solid)), and compared with the
exact quantum result (black).

CMD and RPMD results. The quartic potential at β = 2 (panel
(a)) is a severe test for which any method that neglects real-time
coherence fails after a single recurrence. Nevertheless, we see
that Matsubara dynamics gives a much better treatment than

FIG. 6. Comparisons of position-autocorrelation functions computed using
different levels of theory, for (a) the quartic potential and (b) the weakly
anharmonic potential of Eq. (84). The Matsubara results were obtained using
M = 7 (quartic) and M = 5 (weakly anharmonic).

LSC-IVR, reproducing almost perfectly the first recurrence
at 6 a.u. and damping to zero more slowly.71 The Matsubara
result is also better than both the CMD and RPMD results.
The same trends are found for the weakly anharmonic potential
(Fig. 6, panel (b)) and were also found for the potentials with
intermediate anharmonicity (not shown).

VI. CONCLUSIONS

We have found that a single change in the derivation
of LSC-IVR dynamics gives rise to a classical dynamics
(“Matsubara dynamics”) which preserves the quantum Boltz-
mann distribution. This change involves no explicit truncation
in powers of ~2, but instead a decoupling of a subspace of
ring-polymer normal modes (the Matsubara modes) from the
other modes. The dynamics in this restricted space is found
to be purely classical and to ensure that smooth distribu-
tions of phase-space points (as a function of imaginary time),
which are present in the Boltzmann distribution at time t = 0,
remain smooth at all later times. The LSC-IVR dynamics,
by contrast, includes all the modes, which has the effect of
breaking up these smooth distributions, and thus failing to
preserve the quantum Boltzmann distribution. Numerical tests
show that Matsubara dynamics gives consistently better agree-
ment than LSC-IVR with the exact quantum time-correlation
functions.

These results suggest that Matsubara dynamics is a better
way than LSC-IVR, at least in principle, to account for the
classical mechanics in quantum time-correlation functions. We
suspect that Matsubara dynamics may be equivalent to ex-
panding the time-dependence of the quantum time-correlation
function in powers of ~2 and truncating it at ~0; this is in
contrast to LSC-IVR, in which one truncates the quantum
Liouvillian72 at ~0. However, further work will be needed to
prove or disprove this conjecture.

Matsubara dynamics is far too expensive to be useful as
a practical method. However, it is probably a good starting
point from which to make further approximations in order to
develop such methods. The numerical tests reported here show
that Matsubara dynamics gives consistently better results than
both CMD and RPMD, suggesting that these popular methods
may be approximations to Matsubara dynamics.
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APPENDIX A: DIFFERENTIABILITY WITH RESPECT TO
IMAGINARY TIME

A distribution of ring-polymer coordinates ql, l = 1, . . . ,N
can be written as a smooth and differentiable function of the
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imaginary time τ (0 ≤ τ < β~) if the limit

dq(τ)
dτ

= lim
N→∞

ql+1 − ql−1

2βN~
, τ = l~βN (A1)

exists, i.e., if

lim
N→∞

ql+1 − ql−1 ∼ N−1. (A2)

For a distribution formed by superposing only the Matsubara
modes, we can use trigonometric identities and the definitions
in Sec. III to write

ql+1 − ql−1

= 2
√

2
(M−1)/2

n=1


cos

(
2πnl

N

)
Qn − sin

(
2πnl

N

)
Q−n



× sin
(

2πn
N

)
. (A3)

Since n ≪ N , the sine function on the right ensures that
Eq. (A2) is satisfied; also, repetition of this procedure shows
that higher-order differences of order λ scale as N−λ. Hence
a distribution ql formed from a superposition of Matsubara
modes is a smooth and differentiable function of τ. The same
is true for distributions in pl and ∆l.

To prove that the Matsubara Hamiltonian is invariant un-
der imaginary-time translation [Eq. (78)], we first differen-
tiate the Matsubara potential UM(Q) with respect to τ, which
gives

dUM(Q)
dτ

= lim
N→∞

P1 UM(q) − UM(q)
βN~

, (A4)

where

UM(q) =
N
l=1

V *.
,

N
m=1

(M−1)/2
n=−(M−1)/2

TlnTmnqm
+/
-
, (A5)

and P1 represents a cyclic permutation of the coordinates
qm → qm+1, such that

P1 UM(q) =
N
l=1

V *.
,

N
m=1

(M−1)/2
n=−(M−1)/2

TlnT(m−1) nqm
+/
-
. (A6)

We then rearrange the sum over n in Eq. (A6) into

Tl0T(m−1) 0 +

(M−1)/2
n=1

�
TlnT(m−1) n + Tl −nT(m−1) −n

�
(A7)

and use trigonometric identities to show that

TlnT(m−1) n + Tl −nT(m−1) −n = T(l+1) nTmn + T(l+1) −nTm −n.

(A8)

Re-ordering the sum over l and using the property that Tl0
= N−1/2 gives

P1 UM(q) = UM(q), (A9)

which proves that

dUM(Q)
dτ

= 0. (A10)

The same line of argument can be applied to the kinetic energy
P2/2m, thus proving Eq. (78).

To obtain the derivative of Qn with respect to τ (needed to
prove Eq. (80)), we write

dQn

dτ
= lim

N→∞

1
√

N

N
l=1

Tln
ql+1 − ql−1

2βN~

= lim
N→∞

1
√

N

N
l=1

[T(l−1) n − T(l+1) n]ql
2βN~

(A11)

and use trigonometric identities to obtain

Tl+1 n − Tl−1 n = 2Tl −n sin(2nπ/N). (A12)

Since n ≪ N , it follows that

dQn

dτ
= −ωn

Q−n, (A13)

where ωn is the Matsubara frequency defined in Eq. (61).

APPENDIX B: ERROR TERM FOR MATSUBARA
LIOUVILLIAN

The error term L̂error(N,M) of Eq. (69) is the difference
L̂N − LM between the exact quantum Liouvillian and the Mat-
subara Liouvillian. Using Eqs. (59) and (70) and the trigono-
metric identity

sin(a + b) − sin a ≡ 2 sin
(

b
2

)
cos

(
a +

b
2

)
, (B1)

we can write

L̂error(N,M) =
(N−1)/2

n=(M+1)/2

P−n
m

∂

∂Q−n
+

Pn

m
∂

∂Qn

− 4
~

U(Q) sin
(

X̂
2

)
cos

(
Ŷ +

X̂
2

)
(B2)

with

X̂ =
~

2

(N−1)/2
n=(M+1)/2

←−
∂

∂Q−n

−→
∂

∂P−n
+

←−
∂

∂Qn

−→
∂

∂Pn
(B3)

and

Ŷ =
~

2

(M−1)/2
n=−(M−1)/2

←−
∂

∂Qn

−→
∂

∂Pn
. (B4)

APPENDIX C: DERIVATION OF MATSUBARA
TIME-CORRELATION FUNCTION

To obtain the expression for C[M ]
AB

(t) in Eq. (73), we note
that B(P,Q, t) is independent of the non-Matsubara P modes
(since, by construction, these modes are not involved in the
Matsubara dynamics) which can, therefore, be integrated out,
giving a product of Dirac delta-functions in the non-Matsubara
D modes.73 As a result, the Wigner transform


e−βĤ Â


N

in
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Eq. (71) reduces to


e−βĤ Â


N
(PM,Q)

= (2π~)N−M A(Q)


dDM

(M−1)/2
n=−(M−1)/2

eiPnDn/~

×
N
l=1

⟨η−l−1(Q,DM)|e−βN Ĥ |η+l (Q,DM)⟩, (C1)

where PM and DM include only the Matsubara modes (and Q
includes all N modes) and

η±l (Q,DM) =
(N−1)/2

n=−(N−1)/2

TlnQn ±
(M−1)/2

n=−(M−1)/2

TlnDn/2

(C2)

(where the dependence of η±
l

on (Q,DM) will be suppressed
in what follows). Expressing the bra-ket in ring-polymer form
and using trigonometric identities, we obtain


e−βĤ Â


N
(PM,Q) = (2π~)N−M

(
m

2π βN~2

)N/2

A(Q)


dDM

× e−βNmfM(Q,DM)/2
(M−1)/2

n=−(M−1)/2

eiPnDn/~

× exp


− βN

2



N
l=1

V (η−l ) + V (η+l )




,

(C3)

where

fM(Q,DM)

=
4

(βN~)2
(M−1)/2

n=−(M−1)/2

(
Qn sin

nπ
N
+

D−n
2

cos
nπ
N

)2

+

(N−1)/2
n=(M+1)/2

(Q2
n +Q2

−n)ω2
n. (C4)

On taking the limit N → ∞ and converting DM to D, we
find that the Gaussians involving DM in Eq. (C3) have the form

exp
(
−mD2

nN2/2β~2
)
, (C5)

i.e., each Gaussian in D becomes a Dirac delta-function in
the limit N → ∞. This allows us to replace the third line in
Eq. (C3) by

exp

−βN

N
l=1

V *.
,

(N−1)/2
n=−(N−1)/2

TlnQn
+/
-


(C6)

and to integrate out the D, giving


e−βĤ Â


N
(PM,Q)

=

(
2πm
βN

) (N−M )/2

A(Q)

× e−βNP2
M

/2m
(M−1)/2

n=−(M−1)/2

e2iPnQ−n tan(nπ/N )/~

× exp

− βN

2

N
l=1

V *.
,

(N−1)/2
n=−(N−1)/2

TlnQn
+/
-



× exp

− βNm

2

(N−1)/2
n=(M+1)/2

(Q2
n +Q2

−n)ω2
n


. (C7)

We then substitute this expression into the integral of Eq. (71)
(with


dP replaced by


dPM) and take the limit M → ∞

(subject to M ≪ N), which allows us to integrate out the non-
Matsubara modes in Q. Use of the formula74

N−1
n=1

sin (nπ/N) = N/2N−1 (C8)

then gives Eqs. (73)-(75).
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which individual forward–backward paths are treated classically and
assigned phases15) may give very close agreement with the exact quantum
result for significantly longer times.

72These two approximations are identical only in the limits in which LSC-
IVR and Matsubara dynamics agree and are both exact (i.e., the short-time,
harmonic, and high-temperature limits).

73Note that if B̂ is a function of the momentum operator, then B(P, Q, t)
does depend on the non-Matsubara P coordinates, but that this dependence
has a known, analytic, form, such that these coordinates can be integrated
out, converting the original dependence on the non-Matsubara P coordi-
nates into a dependence on the non-Matsubara Q coordinates.

74I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,
6th ed. (Academic Press, San Diego, California, 2000).
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