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It was shown recently that there exists a true quantum transition-state theory (QTST) corresponding
to the t → 0+ limit of a (new form of) quantum flux-side time-correlation function. Remarkably,
this QTST is identical to ring-polymer molecular dynamics (RPMD) TST. Here, we provide evi-
dence which suggests very strongly that this QTST (≡ RPMD-TST) is unique, in the sense that the
t → 0+ limit of any other flux-side time-correlation function gives either non-positive-definite quan-
tum statistics or zero. We introduce a generalized flux-side time-correlation function which includes
all other (known) flux-side time-correlation functions as special limiting cases. We find that the only
non-zero t → 0+ limit of this function that contains positive-definite quantum statistics is RPMD-
TST. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819077]

I. INTRODUCTION

Classical transition-state theory has enjoyed wide ap-
plicability and success in calculating the rates of chemi-
cal processes.1–4 Its central premise5 is the assumption that
all trajectories which cross the barrier react (rather than
recross).6 This was subsequently recognized as being equiva-
lent to taking the short-time limit of a classical flux-side time-
correlation function,1, 2 whose long-time limit would be the
exact classical rate.7

Until very recently it was thought that there was no
rigorous quantum generalization of classical transition-state
theory,8–10 because the t → 0+ limit of all known quantum
flux-side time-correlation functions was zero, i.e., there was
no short-time quantum rate theory which would produce the
exact rate in the absence of recrossing. Nevertheless, a large
variety of “Quantum Transition-State Theories” (QTSTs)
have been proposed4, 8, 11–19 using heuristic arguments, along
with other methods of obtaining the reaction rate from
short-time data.20–26

However, in two recent papers27, 28 (hereinafter Paper I
and Paper II), we showed that a vanishing t → 0+ limit arises
only because the standard forms of flux-side time-correlation
function use flux and side dividing surfaces that are different
functions of (imaginary-time) path-integral space. When the
flux and side dividing surfaces are chosen to be the same, the
t → 0+ limit becomes non-zero.

Initially, we thought that there would be many types of
computationally useful t → 0+ quantum TST, since there is an
infinite number of ways in which one can choose a common
dividing surface in path integral space. For example, one can
choose the surface to be a function of just a single point (in
path-integral space), in which case one recovers at t → 0+ the
simple form of quantum TST that was introduced on heuris-
tic grounds by Wigner29, 30 (and used to obtain his famous
expression for parabolic-barrier tunnelling). However, this
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form of TST becomes negative at low temperatures,16, 27, 31

because the single-point dividing surface constrains the quan-
tum Boltzmann operator in a way that makes it non-positive-
definite. To obtain positive-definite quantum statistics, it is
necessary to choose dividing surfaces that are invariant un-
der cyclic permutation of the polymer beads, since this pre-
serves imaginary-time translation in the infinite-bead limit.
Under this strict condition, the t → 0+ limit is guaranteed
to be positive definite and, remarkably, is identical to ring-
polymer molecular dynamics TST (RPMD-TST).

This last result is useful because it shows that the pow-
erful techniques of RPMD rate theory32–44 and the earlier-
derived centroid TST11, 12 are not heuristic guesses (as was
previously thought), but are instead rigorous calculations of
the instantaneous thermal quantum flux from reactants to
products.52

The quantum TST referred to above (i.e., RPMD-TST)
is unique, in the sense that any other type of dividing sur-
face gives non-positive-definite quantum statistics, when in-
troduced into the ring-polymerized flux-side time-correlation
function that was introduced in Paper I.27 However, the ques-
tion then arises as to whether there are t → 0+ limits of
different flux-side time-correlation functions, which also give
positive-definite quantum statistics, but which are differ-
ent from (and perhaps better than!) RPMD-TST. Here, we
give very strong evidence (though not a proof) that this
is not the case, and that RPMD-TST is indeed the unique
t → 0+ quantum TST.

After summarizing previous work in Sec. II, we write out
in Sec. III the most general form of quantum flux-side di-
viding surface that we have been able to devise. We cannot
of course prove that a more general form does not exist, but
we find that the new correlation function is sufficiently gen-
eral that it includes all other known flux-side time-correlation
functions as special cases. In Sec. IV, we take the t → 0+ limit
of this function and obtain a set of conditions which are nec-
essary and sufficient for the t → 0+ limit to be non-zero and
positive-definite. We find that these conditions give RPMD-
TST. Section V concludes the article.

0021-9606/2013/139(8)/084116/9/$30.00 © 2013 AIP Publishing LLC139, 084116-1
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II. REVIEW OF EARLIER DEVELOPMENTS

To simplify the algebra, the following is presented for
a one-dimensional system with coordinate x, mass m and
Hamiltonian Ĥ at an inverse temperature β ≡ 1/kBT. The re-
sults generalize immediately to multi-dimensional systems, as
discussed in Paper I.27 We begin with the Miller-Schwarz-
Tromp (MST) expression for the exact quantum mechanical
rate,7, 45

kQM(β) = lim
t→∞ c

sym
fs (t)/Qr(β), (1)

where Qr(β) is the reactant partition function, and

c
sym
fs (t) = Tr[e−βĤ/2F̂ e−βĤ/2eiĤ t/¯ĥe−iĤ t/¯], (2)

where F̂ is the quantum-mechanical flux operator

F̂ = 1

2m
[δ(x − q‡)p̂ + p̂δ(x − q‡)] (3)

and ĥ is the heaviside operator projecting onto states
in the product region, defined relative to the dividing
surface q‡.

The function c
sym
fs (t) tends smoothly to zero in the

t → 0+ limit,8, 9, 46 which would seem to rule out the ex-
istence of a t → 0+ quantum transition-state theory. How-
ever, it was shown in Paper I27 that this behaviour arises
because the flux and side dividing surfaces in Eq. (2) are
different functions of path-integral space.27 When the two
dividing surfaces are the same, the quantum flux-side time-
correlation function becomes non-zero in the t → 0+ limit.
(Note that the classical flux-side time-correlation function
also tends smoothly to zero as t → 0+ if the flux and side
dividing surfaces are different.) A simple form of quantum
flux-side time-correlation function in which the two surfaces
are the same is

C
[1]
fs (t) =

∫
dq

∫
dz

∫
d� h(z)F̂ (q)

×〈q − �/2|e−βĤ |q + �/2〉

×〈q + �/2|eiĤ t/¯|z〉〈z|e−iĤ t/¯|q − �/2〉, (4)

where the superscript [1] indicates that the common dividing
surface is a function of a single-point in path integral space.
In the t → ∞ limit, Eq. (4) gives the exact quantum rate. In
the t → 0+ limit, Eq. (4) is non-zero (because the dividing
surfaces are the same), and thus gives a t → 0+ QTST, which
is found to be identical to one proposed on heuristic grounds
by Wigner in 193229 and later by Miller.30 Unfortunately, this
form of QTST becomes negative at low temperatures, because
the constrained quantum-Boltzmann operator is not positive-
definite, and thus gives an erroneous description of the quan-
tum statistics.16, 27, 31

Paper I27 showed that positive-definite quantum statis-
tics can be obtained using a ring-polymerized flux-side time-

correlation function of the form

C
[N]
fs (t) =

∫
dq

∫
d�

∫
dz F̂[f (q)]h[f (z)]

×
N−1∏
i=0

〈
qi−1 − 1

2�i−1

∣∣e−βN Ĥ
∣∣qi + 1

2�i

〉

× 〈
qi + 1

2�i

∣∣eiĤ t/¯
∣∣zi

〉
× 〈

zi

∣∣e−iĤ t/¯
∣∣qi − 1

2�i

〉
, (5)

where the integrals extend over the whole of path-integral
space (

∫
dq ≡ ∫ ∞

−∞ dq0 . . .
∫ ∞
−∞ dqN−1 and so on), and f (q)

is the common dividing surface, which is chosen to be in-
variant under cyclic permutation of the arguments q or z. The
“ring-polymer flux operator” F̂[f (q)] describes the flux per-
pendicular to f (q), and is given by

F̂[f (q)] = 1

2m

N−1∑
i=0

{
∂f (q)

∂qi

δ[f (q)]p̂i

+ p̂iδ[f (q)]
∂f (q)

∂qi

}
, (6)

where the first term in braces is placed between
e−βN Ĥ |qi + 1

2�i〉 and 〈qi + 1
2�i |eiĤ t/¯, and the second

term between e−iĤ t/¯|qi − 1
2�i〉 and 〈qi − 1

2�i |e−βN Ĥ .47 We
then take the limits

lim
t→0+

lim
N→∞

C
[N]
fs (t)

=
∫

dQ δ[f (Q)]

√
NN

2πmβ

N−1∏
i=0

〈Qj−1|e−βN Ĥ |Qj 〉

= k
‡
Q(β)Qr(β), (7)

where

NN = N

N−1∑
i=0

[
∂f (Q)

∂Qi

]2

(8)

and k
‡
Q(β) is the quantum TST rate, which is guaranteed

to be positive, because the cyclic-permutational invariance
of f (q) ensures that the constrained Boltzmann operator is
positive-definite. Unlike Eq. (4), Eq. (5) does not give the ex-
act quantum rate in the limit t → ∞. However, we showed in
Paper II28 that Eq. (5) does give the exact quantum rate if
there is no recrossing of the dividing surface f (q), and thus
that k

‡
Q(β) is a good approximation to the exact quantum rate

if the amount of such recrossing is small.
Remarkably,

k
‡
Q(β) ≡ k

‡
RPMD−TST(β), (9)

where k
‡
RPMD−TST(β) is the RPMD-TST rate, correspond-

ing to the t → 0+ limit of the (classical) flux-side time-
correlation function in ring-polymer space. Hence Eq. (5)
gives a rigorous justification of the powerful method of
RPMD-TST (and also of centroid-TST), by showing that
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it is a computation of the short time quantum flux (rather
than merely an heuristic approach, as was previously
thought32, 48, 49).

As mentioned above, the dividing surface f (q) is invariant
under cyclic permutation of the coordinates q and z, meaning
that f (q) is invariant under imaginary-time translation in the
limit N → ∞. In Paper I,27 we showed that only if this condi-
tion is met does the t → 0+ limit of Eq. (5) give positive-
definite quantum statistics in the limit N → ∞. Hence, if
we start with the flux-side time-correlation function Eq. (5),
the quantum TST rate k

‡
Q(β) ≡ k

‡
RPMD−TST(β) of Eq. (5) is

unique, in the sense that any other t → 0+ limit [i.e., using
a non-cyclically invariant f (q)] does not give positive-definite
quantum statistics.

III. GENERAL QUANTUM FLUX-SIDE
TIME-CORRELATION FUNCTION

The question then arises as to whether other QTSTs exist,
obtained by taking the t → 0+ limit of other flux-side time-
correlation functions, which also give positive-definite quan-
tum statistics. It is clear that Eq. (5) is not the most general
flux-side time-correlation function with such a limit because
one can modify Eq. (4) to give a “split Wigner flux-side time-
correlation function:”

C
[1]
fs

′
(t) =

∫
dq

∫
dz

∫
d�

∫
dη h(z)F̂(q)

×〈q − �/2|e−βĤ/2|q + �/2〉

×〈q + �/2|eiĤ t/¯|z − η/2〉

×〈z − η/2|e−βĤ/2|z + η/2〉

×〈z + η/2|e−iĤ t/¯|q − �/2〉, (10)

which is easily shown to give the exact quantum rate in the
t → ∞ limit and to have a non-zero t → 0+ limit. This limit is
not positive-definite, but clearly one could imagine generaliz-
ing Eq. (10) in the analogous way to which Eq. (5) is obtained
by ring-polymerizing Eq. (4).

A form of flux-side time-correlation function which does
include Eq. (10), as well as a ring-polymerized generalization

of it, is

C
[�]
fs�= (t) =

∫
dq

∫
dz

∫
d�

∫
dη F̂[f (q)]h[g(z)]

×
N−1∏
i=0

〈qi−1 − �i−1/2|e−βξ−
i Ĥ |qi + �i/2〉

×〈qi + �i/2|eiĤ t/¯|zi − ηi/2〉
×〈zi − ηi/2|e−βξ+

i Ĥ |zi + ηi/2〉
×〈zi + ηi/2|e−iĤ t/¯|qi − �i/2〉. (11)

Here the imaginary time-evolution has been divided into
pieces of varying lengths ξ±

i β¯, which are interspersed with
forward-backward real-time propagators. To set the inverse
temperature β, we impose the requirement

N−1∑
i=0

ξ−
i + ξ+

i = 1, (12)

where ξ±
i ≥ 0 ∀i. The only restrictions, at present, on the di-

viding surface f (q) are

lim
q→∞ f (q, q, . . . , q) > 0, (13)

lim
q→−∞ f (q, q, . . . , q) < 0, (14)

and similarly for g(q). [These are simply the conditions that
are necessary for f (q) and g(q) to distinguish reactants from
products and thus do their jobs as dividing surfaces.] The sub-
script �= symbolizes that the dividing surfaces are not neces-
sarily equal. Equation (11) is represented diagrammatically in
Fig. 1(a).

The function C
[�]
fs�= (t) correlates the flux averaged over

a set of imaginary-time paths with the side averaged over
another set of imaginary-time paths at some later time t.
Every form of quantum flux-side time-correlation function
(known to us) can be obtained either directly from C

[�]
fs�= (t),

using particular choices of f (q), g(q), and ξ , or by taking
linear combinations of C

[�]
fs�= (t) containing different values of

these parameters; see Table I. We believe that C
[�]
fs�= (t) is the

most general expression yet obtained for a quantum flux-side
time-correlation function (before taking linear combinations),
although we cannot prove that a more general expression does
not exist.

FIG. 1. Diagrams showing (a) the generalized flux-side time-correlation function C
[�]
fs�= (t) of Eq. (11); (b) the t → 0+ limit of C

[�]
fs (t), Eq. (25); (c) the latter

for a large value of N. Sinusoidal lines represent real-time evolution, curved lines imaginary-time evolution, and the symbols indicate the places acted on by the
flux operator F̂[f (q)] (blue crosses) and the side operator h[g(z)] (red circles).
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TABLE I. How to generate every (known) form of flux-side time-correlation function as a special case of Eq. (11). The terms ξ−
i , ξ+

i , F̂[f (q)], and h[g(z)]
are defined in Eq. (11). Double-Wigner TST is the generalization of Wigner-TST that results from the t → 0+ limit of Eq. (4). In the hybrid and ring-polymer
expressions, f (q) is chosen to be invariant under cyclic permutation of the coordinates qi; RPMD-TST specializes to centroid-TST when f (q) = ∑N−1

i=0 qi/N .

Flux-side t.c.f. N ξ−
i ξ+

i F̂[f (q)] h[g(z)] t → 0+ limit

Miller-Schwarz-Tromp45 2 1/2 0 F̂(q1) h(z0) 0
Asymmetric MST45 2 ξ−

1 = 1, ξ−
2 = 0 0 F̂(q1) h(z0) 0

Kubo-transformed32 ∞ 1/N 0 F̂(q0)
∑N−1

i=1 h(zi ) 0

Wigner [C[1]
fs (t) of Eq. (4)] 1 1 0 F̂(q0) h(z0) Wigner TST29

C
[1]
fs (t)′ of Eq. (10) 1 1/2 1/2 F̂(q0) h(z0) Double-Wigner TST

Hybrid [Eq. (7) of Ref. 28] >1 1/N 0 F̂[f (q)] h(z0) 0

Ring-polymer [C[N]
fs (t) of Eq. (5)] ∞ 1/N 0 F̂[f (q)] h[f (z)] RPMD-TST

IV. THE SHORT-TIME LIMIT

We now take the t → 0+ limit of Eq. (11), and determine
the conditions under which this limit is non-zero and contains
positive-definite quantum statistics.53

A. Non-zero t → 0+ limit

In order to calculate the short-time limit of Eq. (11), we
first note that

lim
t→0+

〈x|eiĤ t/¯|y〉〈y|e−iĤ t/¯|z〉

= 〈x|eiĤ0t/¯|y〉〈y|e−iĤ0t/¯|z〉, (15)

where Ĥ0 = p̂2/2m is the free particle Hamiltonian, and that

〈x|e−iĤ0t/¯|y〉 =
√

m

2πi¯t
eim(x−y)2/2¯t (16)

〈x|e−iĤ0t/¯p̂|y〉 = (x − y)m

t

√
m

2πi¯t
eim(x−y)2/2¯t . (17)

We then substitute the identity

e−βξ+
i Ĥ ≡

∫
dyi

∫
dζi e−iĤ t/¯|yi − ζi/2〉

×〈yi − ζi/2|e−βξ+
i Ĥ |yi + ζi/2〉

×〈yi + ζi/2|eiĤ t/¯ (18)

into Eq. (11), to obtain

C
[�]
fs�= (t → 0+)

= lim
t→0+

∫
dq

∫
dz

∫
d�

∫
dη

∫
dy

∫
dζ F̂[f (q)]h[g(z)]

×
N−1∏
i=0

〈qi−1 − �i−1/2|e−βξ−
i Ĥ |qi + �i/2〉

×〈qi+�i/2|eiĤ t/¯|zi−ηi/2〉〈zi−ηi/2|e−iĤ t/¯|yi−ζi/2〉
×〈yi − ζi/2|e−βξ+

i Ĥ |yi + ζi/2〉
×〈yi + ζi/2|eiĤ t/¯|zi + ηi/2〉
×〈zi + ηi/2|e−iĤ t/¯|qi − �i/2〉. (19)

The imaginary-time propagators in Eq. (19) alternate
with pairs of forward-backward real-time propagators, which
allows us to use Eqs. (15)–(17) to take the t → 0+ limit.50

This procedure is straightforward, but algebraically lengthy,

so we give only the main steps here, relegating the details to
Appendix A.

The first step (the Appendix A 1) is to transform Eq. (19)
to

C
[�]
fs�= (t) =

∫
dQ

∫
dZ

∫
dD F̂[f (Q, D)]h[g(Z)]

×
2N−1∏
j=0

〈Qj−1 − Dj−1/2|e−βξj Ĥ |Qj + Dj/2〉

×〈Qj + Dj/2|eiĤ t/¯|Zj 〉
×〈Zj |e−iĤ t/¯|Qj − Dj/2〉, (20)

where Q ≡ {Qj}, j = 0. . . 2N − 1, and similarly for Z, D,
and

ξ2i = ξ−
i (21)

ξ2i+1 = ξ+
i , i = 0, . . . , N − 1, (22)

i.e., we have halved the number of brackets in each imagi-
nary time-slice, by doubling the number of polymer beads.
Equation (20) is superficially similar to Eq. (31) of Paper I,27

but differs from it in the important respect that the dividing
surface f (q) now depends on the coordinate D (in the way de-
scribed in the Appendix A 1). As a result the flux and side
dividing surfaces are in general different functions of path
integral space, even if we choose f (q) ≡ g(q). On the basis
of Paper I,27 one might therefore expect the t → 0+ limit of
Eq. (20) to be zero, except for the special cases correspond-
ing to Wigner TST and RPMD-TST (given in Table I). How-
ever, we show in the Appendix A 2 that the t → 0+ limit of
Eq. (20) is always non-zero when f (q) ≡ g(q), because the
D-dependence of f (Q, D) integrates out in this limit, to give

lim
t→0+

C
[�]
fs (t)

= 1

(2π¯)N

∫
dQ

∫
dP+

∫
dD+ δ[f (Q)]Sf (Q, P+)h[Sf (Q, P+)]

×
N−1∏
i=0

〈
Q2i−1 − 1

2
√

2
D+

i−1

∣∣e−βξj Ĥ
∣∣Q2i + 1

2
√

2
D+

i

〉

× 〈
Q2i − 1

2
√

2
D+

i

∣∣e−βξj Ĥ
∣∣Q2i+1 + 1

2
√

2
D+

i

〉
eiD+

j P +
j /¯,

(23)

where P+ and D+ are the N-dimensional vectors defined in the
Appendix A 2, Sf(Q, P+) is the flux perpendicular to f (Q),
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and the absence of a subscript �= in C
[�]
fs (t) indicates f (q)

≡ g(q). Thus, in general, f (Q, D) acts as a time-dependent
flux-dividing surface, which becomes the same as the side-
dividing surface in the limit t → 0+ if f (q) ≡ g(q). Clearly
f (q) is time-independent in the special case that ξ−

i = 1/N,

ξ+
i = 0, in which Eq. (11) reduces to Eq. (5) (see Table I).

We can tidy up Eq. (23) by integrating out (N − 1) of the
integrals in P+ and D+ (see the Appendix A 3), to obtain

lim
t→0+

C
[�]
fs (t)

= 1

2π¯

∫
dQ

∫
dP̃0

∫
dD̃0

×h[P̃0]
P̃0

m

√
BNδ[f (Q)]eiD̃0P̃0/¯

×
2N−1∏
j=0

〈Qj−1 − Tj−1 0D̃0/2|e−βξj Ĥ |Qj + Tj0D̃0/2〉, (24)

where P̃0 is the momentum perpendicular to the dividing sur-
face f (Q), D̃0 describes a collective ring-opening mode, Tj0

is the weighting of the jth path-integral bead in the dividing
surface f (Q) [see Eq. (A18)], and

√
BN is a normalization

constant associated with P̃0.

B. Positive-definite Boltzmann statistics

Having shown that the t → 0+ limit of Eq. (11) is non-
zero if f (q) ≡ g(q), we now determine the conditions on
f (q) that give rise to positive-definite quantum statistics. The
special case ξ−

i = 1/N, ξ+
i = 0 has already been treated in

Paper I27 and we use the same approach here for the more gen-
eral case, which is to find the condition on f (q) which guaran-
tees that the integral over D̃0 in Eq. (24) is positive in the limit
N → ∞. We first express the Boltzmann operator in ring poly-
mer form

lim
N→∞

2N−1∏
j=0

〈Qj−1 − Tj−1 0D̃0/2|e−βξj Ĥ |Qj + Tj0D̃0/2〉

=
2N−1∏
j=0

√
m

2πβξj¯2

× e−βξj [V (Qj−1−Tj−1 0D̃0/2)+V (Qj +Tj0D̃0/2)]/2

× e−m[Qj −Qj−1+D̃0(Tj−1 0+Tj0)/2]2/2βξj¯
2

(25)

and note that Tj0 ∼ N−1/2, which ensures that the potential
energy terms are independent of D̃0 in the limit N → ∞.51

Expanding the spring term,

lim
N→∞

2N−1∑
j=0

m

2βξj¯2
[Qj − Qj−1 + D̃0(Tj−1 0 + Tj0)/2]2

= lim
N→∞

2N−1∑
j=0

m[Qj − Qj−1]2/2βξj¯
2

+m[Qj − Qj−1]D̃0(Tj−1 0 + Tj0)/2βξj¯
2

+mD̃2
0(Tj−1 0 + Tj0)2/8βξj¯

2, (26)

we see that the integral over the Boltzmann operator is guar-
anteed to be positive if and only if the cross-terms vanish. In
other words the condition

lim
N→∞

N−1∑
j=0

m[Qj−Qj−1]D̃0(Tj−1 0 + Tj0)/2βξj¯
2 = 0 (27)

must be satisfied for the Boltzmann statistics to be
positive-definite. In Appendix B, we show that this condition
is equivalent to requiring the dividing surface f (Q) to be in-
variant under imaginary-time translation. This was the same
conclusion reached in Paper I,27 starting from the special case
of ξ−

i = 1/N, ξ+
i = 0.

C. Emergence of RPMD-TST

When f (q) is invariant under imaginary-time translation
we can integrate out D̃0 and P̃0 (see Appendix C), to obtain

lim
t→0+

lim
N→∞

C
[�]
fs (t) =

∫
dQ δ[f (Q)]

√
N2N

2πmβ

×
2N−1∏
j=0

〈Qj−1|e−βξj Ĥ |Qj 〉 (28)

with

N2N = lim
N→∞

2N−1∑
j=0

1

4ξj

[
∂f (Q)

∂Qj−1
+ ∂f (Q)

∂Qj

]2

. (29)

The integral in Eq. (28) is the generalization of the RPMD-
TST integral of Eq. (7) to unequally spaced imaginary time-
slices ξ j. Both expressions converge to the same result in the
limit N → ∞, i.e.,

lim
t→0+

lim
N→∞

C
[�]
fs (t) = k

‡
Q(β)Qr(β)

≡ k
‡
RPMD−TST(β) (30)

provided that f (q) ≡ g(q) and that f (q) is invariant under
imaginary-time translation. In other words, a positive-definite
t → 0+ limit can arise from the general time-correlation func-
tion Eq. (11) only if f (q) is invariant under imaginary-time-
translation (in the limit N → ∞), in which case this limit is
identical to that obtained from the simpler time-correlation
function Eq. (31) in Paper I,27 namely, RPMD-TST.

The above derivation can easily be generalized to multi-
dimensions, by following the same procedure as that applied
to Eq. (5) in Sec. V of Paper I.27

V. CONCLUSIONS

We have introduced an extremely general quantum flux-
side time-correlation function, and found that its t → 0+
limit is non-zero only when the flux and side dividing sur-
faces are the same function of path-integral space, and that it
gives positive-definite quantum statistics only when the com-
mon dividing surface is invariant to imaginary-time transla-
tion. This t → 0+ limit is identical to the one that was derived
in Paper I27 starting from a simpler form of flux-side time-
correlation function (a special case of the function introduced

Downloaded 04 Sep 2013 to 131.111.115.85. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



084116-6 T. J. H. Hele and S. C. Althorpe J. Chem. Phys. 139, 084116 (2013)

here), where it was shown to give a true t → 0+ quantum TST
which is identical to RPMD-TST.

We cannot prove that a yet more general flux-side time-
correlation function does not exist (than the one introduced
here) which might support a different non-zero t → 0+ limit,
which nevertheless gives positive-definite quantum statistics.
However, given that the function introduced here includes all
known flux-side time-correlation functions as special cases,
we think that this is unlikely.

This article, therefore, provides strong evidence (al-
though not conclusive proof) that the quantum TST of
Paper I27 is unique, in the sense that there is no other
t → 0+ limit which gives a non-zero quantum TST contain-
ing positive-definite quantum statistics. In other words, if one
wishes to obtain an estimate of the thermal quantum rate by
taking the instantaneous flux through a dividing surface, then
RPMD-TST cannot be bettered.
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APPENDIX A: DERIVATION OF THE t → 0+
LIMIT OF EQ. (11)

1. Coordinate transformation

The coordinate transform used to convert Eq. (19) to
Eq. (20) is

Qj =
{

1
2 (qi + �i/2 + yi − ζi/2) , j = 2i

1
2 (qi − �i/2 + yi + ζi/2) , j = 2i + 1,

(A1)

Dj =
{−qi − �i/2 + yi − ζi/2, j = 2i

qi − �i/2 − yi − ζi/2, j = 2i + 1,
(A2)

Zj =
{

zi − ηi/2, j = 2i

zi + ηi/2, j = 2i + 1,
(A3)

where j = 0, 1, . . . , 2N − 1 and i = 0, 1, . . . , N − 1.
The associated Jacobian is unity. Note that f (q) is of course
unchanged by the coordinate transformation, so f (Q, D) in
Eq. (20) depends on Q and D through the relation

qi = Q2i + Q2i+1 + (D2i+1 − D2i)/2, (A4)

i.e., f (Q, D) is not a general function of Q and D, since it
remains a function of only N independent variables. Similarly,
g(Z) depends on Z through

zi = (Z2i + Z2i+1)/2. (A5)

2. The t → 0+ limit

The t → 0+ limit of Eq. (20) can be obtained by a
straightforward application of Eqs. (15)–(17), and is

lim
t→0+

C
[�]
fs�= (t)

= lim
t→0+

1

(2π¯)2N

∫
dQ

∫
dP

∫
dD

× δ[f (Q, D)]Sf (Q, D, P)h[g(Q + Pt/m)]

×
2N−1∏
j=0

〈Qj−1−Dj−1/2|e−βξj Ĥ |Qj+Dj/2〉eiDj Pj /¯, (A6)

where Pj = (Zj − Qj)m/t, and

Sf (Q, D, P) = 1

2m

N∑
i=1

∂f (q)

∂qi

pi (A7)

= 1

2m

N∑
i=1

∂f (Q, D)

∂[Q2i + Q2i+1 + (D2i+1 − D2i)/2]

×
[
P2i + P2i+1 + m

2t
(D2i+1 − D2i)

]
(A8)

with pi = (zi − qi)m/t.
To convert Eq. (A6) to Eq. (A13), we note that

∂g(Z)

∂Z2i

= ∂g(Z)

∂Z2i+1
, (A9)

[see (A5)] and hence that

lim
t→0+

g(Q + Pt/m) = g(Q) + t

m

N−1∑
i=0

(P2i + P2i+1)
∂g(Q)

∂Q2i

.

(A10)

Transforming to

P +
i = 1√

2
(P2i + P2i+1), (A11)

P −
i = 1√

2
(P2i − P2i+1), (A12)

where 0 ≤ i ≤ N − 1 and likewise for D+, D−, we obtain

lim
t→0+

C
[�]
fs�= (t) = lim

t→0+

1

(2π¯)2N

∫
dQ

∫
dP+

∫
dP−

∫
dD+

∫
dD−δ[f (Q, D−)]Sf (Q, D−, P+)h[g(Q +

√
2P+t/m)]

×
N−1∏
i=0

[
eiD+

i P +
i /¯eiD−

i P −
i /¯

〈
Q2i−1 − 1

2
√

2

(
D+

i−1 − D−
i−1

)∣∣e−βξ2i Ĥ
∣∣Q2i + 1

2
√

2

(
D+

i + D−
i

)〉

× 〈
Q2i− 1

2
√

2

(
D+

i +D−
i

)∣∣e−βξ2i+1Ĥ
∣∣Q2i+1+ 1

2
√

2

(
D+

i −D−
i

)〉]
. (A13)
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We can then integrate out the P− to generate N Dirac delta
functions in D−, such that f (Q, D−) and Sf(Q, D−, P+) reduce
to f (Q) and Sf(Q, P+), and Eq. (A13) becomes

lim
t→0+

C
[�]
fs�= (t)

= lim
t→0+

1

(2π¯)N

∫
dQ

∫
dP+

∫
dD+

× δ[f (Q)]Sf (Q, P+)h[g(Q +
√

2P+t/m)]

×
N−1∏
i=0

〈
Q2i−1 − 1

2
√

2
D+

i−1

∣∣e−βξ2i Ĥ
∣∣Q2i + 1

2
√

2
D+

i

〉
× 〈

Q2i − 1
2
√

2
D+

i

∣∣e−βξ2i+1Ĥ
∣∣Q2i+1 + 1

2
√

2
D+

i

〉
× eiD+

i P +
i /¯. (A14)

It is easy to show (following the reasoning given in
Sec. III B of Paper I27) that this expression is non-zero only if
f (Q) ≡ g(Q), in which case the limit

lim
t→0+

δ[f (Q)]h[f (Q +
√

2P+t/m)]

= lim
t→0+

δ[f (Q)]h[f (Q) + tSf (Q, P+)]

= δ[f (Q)]h[Sf (Q, P+)] (A15)

results in Eq. (23).

3. Normal mode transformation

To integrate out D+
i , i > 0 from Eq. (23), we transform

to the coordinates

P̃ ′
j =

N−1∑
i=0

P +
i T ′

2ij , (A16)

D̃′
j =

N−1∑
i=0

D+
i T ′

2ij , (A17)

where

T ′
i0 = 1√

BN

∂f (Q)

∂Qi

, (A18)

B ′
N =

N−1∑
i=0

[
∂f (Q)

∂Q2i

]2

(A19)

such that Sf (Q, P+) = P̃ ′
0

√
2B ′

N and, from Eq. (A4),
T ′

2i0 = T ′
2i+10. The other normal modes, T ′

ij , j = 1, . . . ,
N − 1 are chosen to be orthogonal to T ′

i0 and their exact
form need not concern us further. Unless f (Q) is linear in
Q (such as a centroid), T ′

ij and BN are functions of Q. We
obtain

lim
t→0+

C
[�]
fs (t) = 1

(2π¯)N

∫
dQ

∫
dP̃′

∫
dD̃′h(P̃ ′

0)
P̃ ′

0

m

√
B ′

Nδ[f (Q)]
N−1∏
i=0

eiD̃′
i P̃

′
i /¯

×
2N−1∏
j=0

〈
Qj−1 − 1

2
√

2

N−1∑
i=0

T ′
j−1 iD̃

′
i

∣∣∣∣∣ e−βξj Ĥ

∣∣∣∣∣Qj + 1
2
√

2

N−1∑
i=0

T ′
jiD̃

′
i

〉
. (A20)

Integrating out P̃ ′
i , 1 ≤ i ≤ N − 1 to generate Dirac delta functions in D̃′

i , 1 ≤ i ≤ N − 1, which are themselves then inte-
grated out, we obtain

lim
t→0+

C
[�]
fs (t) = 1

2π¯

∫
dQ

∫
dP̃ ′

0

∫
dD̃′

0h[P̃0]
P̃ ′

0

m

√
2BNδ[f (Q)]eiD̃′

0P̃
′
0/¯

×
2N−1∏
j=0

〈
Qj−1 − 1

2
√

2
T ′

j−1 0D̃
′
0

∣∣e−βξj Ĥ
∣∣Qj + 1

2
√

2
T ′

j0D̃
′
0

〉
. (A21)

This transformation was made using the N-dimensional
P+, D+ coordinates. To redefine the transformation from 2N-
dimensional P, D we define P̃ D̃ (where the absence of a prime
indicates a 2N-dimensional transformation), such that [using
Eq. (A4)]

P̃ ′
0 =

∑N−1
i=0 P +

i
∂f (Q)
∂Q2i√∑N−1

i=0

(
∂f (Q)
∂Q2i

)2
(A22)

=
∑2N−1

i=0 Pi
∂f (Q)
∂Qi√∑2N−1

i=0

(
∂f (Q)
∂Qi

)2
(A23)

= P̃0. (A24)

Likewise D̃′
0 = D̃0. However, from Eq. (A19),

B ′
N = 1

2

2N−1∑
i=0

[
∂f (Q)

∂Qi

]2

(A25)
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= 1

2
BN (A26)

and it follows from this result Eq. (A18) that Tj0 = T ′
j0/

√
2.

These adjustments convert Eq. (A21) to Eq. (24).

APPENDIX B: INVARIANCE OF THE DIVIDING
SURFACE TO IMAGINARY-TIME TRANSLATION

To show that Eq. (27) is equivalent to the requirement
that f (q) be invariant under imaginary time-translation (in the
limit N → ∞), we rewrite this expression in the form

lim
N→∞

2N−1∑
j=0

Tj0

(
Qj+1 − Qj

β¯ξj+1
− Qj−1 − Qj

β¯ξj

)
= 0. (B1)

We then consider a shift in the imaginary-time origin by a
small, positive, amount δτ , which we represent by the opera-
tor P+δτ . We then obtain

lim
N→∞

P+δτQj = Qj + (Qj+1 − Qj )δτ/ξj+1 (B2)

and hence

lim
N→∞

P+δτ f (Q)

= lim
N→∞

f (Q) +
2N−1∑
j=0

(Qj+1 − Qj )
∂f (Q)

∂Qj

δτ

β¯ξj+1
. (B3)

Noting from Eq. (A18) that ∂f (Q)/∂Qj = √
BNTj0, we see

that the second term on the RHS of Eq. (B3) is proportional to
the first term on the LHS of Eq. (B1). Using similar reasoning,
we find that the second term on the LHS of Eq. (B1) is propor-
tional to − limN→∞ P−δτ f (Q), where P−δτ denotes a shift in
the imaginary-time origin by a small, negative, amount −δτ .
Eq. (B1) is thus equivalent to the condition

lim
N→∞

P+δτ f (Q) − P−δτ f (Q) = 0, (B4)

i.e., that the dividing surface f (Q) is invariant to imaginary-
time-translation in the limit N → ∞.

APPENDIX C: INTEGRATING OUT THE
RING-OPENING COORDINATE

When Eq. (27) is satisfied, the only contribution to the
imaginary-time path-integral from D̃0 in the limit N → ∞ is
the term mD̃2

0A(Q)/2β¯2, in which

A(Q) = lim
N→∞

2N−1∑
j=0

1

4ξj

[Tj−1 0 + Tj0]2 (C1)

= lim
N→∞

1

BN

2N−1∑
j=0

1

4ξj

[
∂f (Q)

∂Qj−1
+ ∂f (Q)

∂Qj

]2

(C2)

and where the last line follows from the definition of Tj0 in
Appendix A. The integral over D̃0 in Eq. (24) is then easily

evaluated to give

lim
t→0+

C
[�]
fs (t)

= 1

2π¯

∫
dQ

∫
dP̃0 h[P̃0]

P̃0

m

√
BNδ[f (Q)]

×
√

2πβ¯2

mA(Q)
e−βP̃ 2

0 /2mA(Q)
2N−1∏
j=0

〈Qj−1|e−βξj Ĥ |Qj 〉 (C3)

and integration over P̃0 gives Eq. (28).
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