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Surprisingly, there exists a quantum flux-side time-correlation function which has a non-zero
t → 0+ limit and thus yields a rigorous quantum generalization of classical transition-state theory
(TST). In this Part I of two articles, we introduce the new time-correlation function and derive its
t → 0+ limit. The new ingredient is a generalized Kubo transform which allows the flux and side
dividing surfaces to be the same function of path-integral space. Choosing this function to be a single
point gives a t → 0+ limit which is identical to an expression introduced on heuristic grounds by
Wigner in 1932; however, this expression does not give positive-definite quantum statistics, causing
it to fail while still in the shallow-tunnelling regime. Positive-definite quantum statistics is obtained
only if the dividing surface is invariant to imaginary-time translation, in which case the t → 0+ limit
is identical to ring-polymer molecular dynamics (RPMD) TST. The RPMD-TST rate is not a strict
upper bound to the exact quantum rate, but is a good approximation to one if real-time coherence
effects are small. Part II will show that the RPMD-TST rate is equal to the exact quantum rate in the
absence of recrossing. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792697]

I. INTRODUCTION

It is well known1, 2 that classical transition state theory3

(TST) corresponds to taking the short time (t → 0+) limit of
the classical flux-side time-correlation function, and that this
can be done because this function is odd and discontinuous
about t = 0 (see Fig. 1).

Unfortunately, this convenient behaviour has not seemed
to carry over into quantum rate-theory,4–6 where the vari-
ous forms of quantum flux-side time-correlation function tend
smoothly to zero in the t → 0+ limit (see Fig. 1). This is
a pity, because it is still impossible to evaluate the quantum
flux-side time-correlation function at t > 0 for all but the
simplest systems.7–10 A vast number of methods have been
developed in an attempt to circumvent this problem. One
type of method is to include quantum corrections into clas-
sical TST,11, 12 the most famous instance of this being the
Wigner-Eyring formula.13 A more systematic approach is to
use semi-classical theories14–28 (some of which we discuss be-
low) or the quantum instanton approach.29, 30 However, there
is one approach20, 31–46 that is especially relevant to this arti-
cle, which is to note that classical TST takes the form of a
free-energy combined with a flux factor and then to exploit
the fact that it is relatively easy to compute a quantum free
energy, using “ring-polymer” path-integration.47–50

This last approach has turned out to be extremely pow-
erful. Its most general formulation is ring-polymer molecu-
lar dynamics (RPMD) TST,20, 31–41 in which the free-energy
is obtained by constraining the ring-polymers using a gen-
eral dividing surface. For reasonably symmetric reaction bar-
riers, this dividing surface can be made a function of just the

a)Author to whom correspondence should be addressed. Electronic mail:
sca10@cam.ac.uk.

polymer-bead centroids.42–46 This “centroid-TST” approach
was the earliest form of the theory, but it breaks down for
asymmetric reaction barriers. The more general RPMD-TST
approach is usually implemented indirectly,31–41 as it is more
convenient to simulate the system as a classical rate-process
taking place in a fictitious, extended, space of ring-polymers,
and to exploit the property that the resulting rate is an ap-
proximation to the RPMD-TST rate.51 This approach has re-
cently allowed approximate quantum rates to be computed
for hydride-transfer in enzymes39 and for condensed-phase
electron-transfer.40

To date, however, there has been no first-principles
derivation of the RPMD-TST rate, beyond proving that it in-
terpolates between various limits. It gives the exact classi-
cal and parabolic-barrier rates at high temperatures31 and is
close to the “Im F” instanton rate18–20, 25, 52 at low tempera-
tures. Note that the “Im F” instanton rate has itself not been
derived from quantum rate-theory; it gives good approxima-
tions to the rate in the deep-tunnelling regime and is proba-
bly best regarded as a rough interpolation between Miller’s
steepest-descent instanton theory17 and classical rate theory.

The aim of this article (Part I) and of the forthcoming
Part II is to show that, contrary to what has just been said,
there does exist a form of quantum flux-side time-correlation
function with a non-zero t → 0+ limit, which limit does give
the exact rate in the absence of recrossing and, which, remark-
ably, is identical to RPMD-TST. This article will focus on
deriving the t → 0+ limit and establishing that it is equal to
RPMD-TST. Part II will prove that the RPMD-TST rate is
equal to the exact quantum rate in the absence of recrossing.

To obtain these new results, we will use the same over-
all strategy that Miller and co-workers4, 5 used to first ob-
tain quantum rate-theory; i.e., we will derive the theory for
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FIG. 1. Behaviour of classical and quantum flux-side time-correlation func-
tions Gfs(t) and Cfs(t) as a function of time t. k

‡
C(β) is the classical TST rate

and Zr(β) the reactant partition function.

quantum scattering systems, because rate-theory is then for-
mally exact (since the flux-side time-correlation function has
a plateau extending to t → ∞) and hence straightforward to
derive. We will then assume that the theory also applies to
condensed-phase rate-processes, subject to the usual caveat of
there being a separation in timescales between barrier cross-
ing and equilibration.53 Hence although we will make use of
quantum scattering theory as a derivational tool, the quantum
TST results that we obtain from it are applicable generally.
Note that this article is almost completely free of quantum
scattering theory, but it will appear in quite some detail in
Part II.

An important theme running through this article is that of
linearization, by which we mean use of the linearized semi-
classical initial-value representation.26–28, 54 In this approach,
Feynman paths in the forward and backward real-time prop-
agators are assumed to cancel out unless they are very close
together, such that the difference in their actions can be ex-
panded to linear order in position. This approximation has
the effect of removing all real-time Feynman paths, except
the forward-backward pairs that lie along classical trajecto-
ries joining the start and end points, which reduces the time-
correlation function to its classical Wigner approximation.
Now, as t → 0+, linearization becomes exact, meaning that
the time-evolution of the quantum flux-side time-correlation
function becomes entirely classical in this limit (whereas the
statistics, of course, remain quantal). We will show that this
property gives rise to a t → 0+ quantum TST.

The article is structured as follows: After summarising
some basic aspects of classical TST in Sec. II, we describe in
Sec. III how the exact linearization of the dynamics in the
t → 0+ limit can be used to explain why the standard
flux-side time-correlation function tends smoothly to zero as
t → 0+ and how one can modify it to make it discontinuous
instead. This gives rise to a quantum TST which is identical
to an expression introduced on heuristic grounds by Wigner,55

but which gives bad quantum statistics at low temperatures.
In Sec. IV, we show that the correct (i.e., positive-definite)
quantum statistics can be obtained using a generalized Kubo-
transform, which gives a flux-side time-correlation function
that is invariant to imaginary-time translation; the t → 0+
limit of this expression is identical to RPMD-TST. In
Sec. V we point out that the results of Secs. III and IV, which
were derived in one-dimension to simplify the algebra, can
be generalized immediately to multi-dimensions. Section VI
concludes the article.

II. CLASSICAL TRANSITION-STATE THEORY

Here, we discuss some well-known ideas from classi-
cal rate theory, which we will apply in Secs. III and IV to
quantum rate theory (where their use is less intuitive). Note
that this section considers an f-dimensional classical system,
whereas Secs. III and IV consider a one-dimensional quantum
system. This is because the t → 0+ limit of the latter is sim-
ilar to the t → 0+ limit of a multi-dimensional classical sys-
tem. (Extension of the quantum theory to multi-dimensions is
straightforward and is left until Sec. V.)

The exact classical rate coefficient kC(β) is given by1, 2

kC(β)Zr(β) = lim
t→∞ − d

dt
Gss(t),

= lim
t→∞ Gfs(t), (1)

where Zr(β) is the (classical) reactant partition function,
β = 1/kBT, Gss(t) is the side-side time-correlation function

Gss(t) = 1

(2π¯)f

∫
dp

∫
dq e−βH h[s(q)]h[s(qt )], (2)

and Gfs(t) is the flux-side time-correlation function

Gfs(t) = 1

(2π¯)f

∫
dp

∫
dq e−βH δ[s(q)]ṡ(q, p)h[s(qt )].

(3)

The t = 0 time-derivative of s(q) is defined to be

ṡ(q, p) =
f∑

i=1

pi

mi

∂s(q)

∂qi

(4)

and is the flux through the dividing surface at time t → 0+; qt

is the position at time t of a classical particle that started at
(q, p) at time t = 0.

It is well known that Gfs(t) is discontinuous in the
t → 0+ limit, behaving as in Fig. 1, and that the classical
TST rate coefficient k

‡
C(β) is given by

k
‡
C(β)Zr(β) = lim

t→0+
Gfs(t). (5)

In the absence of recrossing, Gfs(t) would remain constant
for all time and thus k

‡
C(β) would be the exact rate. In a real

system, for which there is recrossing, k
‡
C(β) is a strict upper

bound, since recrossing of the dividing surface necessarily re-
duces the rate.

Now, it is useful to clarify why Gfs(t) is discontinuous
at t = 0, since this mathematical oddity is essential to the
existence of classical TST and is the thing that we need to
introduce into quantum rate theory if we are to obtain a true
quantum TST. To take the t → 0+ limit of Gfs(t), we note that

lim
t→0+

s(qt ) = ṡ(q, p) t + s(q) (6)

and hence that

lim
t→0+

δ[s(q)]h[s(qt )] = δ[s(q)] h[ṡ(q, p) t + s(q)],

= δ[s(q)] h[ṡ(q, p)], (7)
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which gives the familiar expression

lim
t→0+

Gfs(t) = 1

(2π¯)f

∫
dp

∫
dq

× e−βH δ[s(q)]ṡ(q, p)h[ṡ(q, p)]. (8)

Hence the discontinuity at t → 0+ arises because the Dirac-
delta function sets s(q) to zero inside the Heaviside function,
turning the latter into a time-independent momentum [i.e.,
ṡ(q, p)] filter, which is abruptly switched off at t = 0. Of
course the reason this happens is that the flux and side divid-
ing surfaces are the same function s(q). If we choose different
functions s1(q) and s2(q) for the dividing surfaces, we obtain

lim
t→0+

δ[s1(q)]h[s2(qt )] = δ[s1(q)] h
[
ṡ2(q, p) t + s2(q)

]
,

�= δ[s1(q)] h[ṡ2(q, p)], (9)

i.e., the momentum filter switches off smoothly as t → 0+ (be-
cause the contribution of ṡ(q, p) inside the heaviside function
is gradually turned off as t → 0+).

The property that s1(q) and s2(q) must be the same to give
a non-zero t → 0+ limit is not restricted to the Boltzmann
distribution; any (non-pathological) distribution of (q, p) will
also behave this way. As a result, we can use the analysis just
given (which is trivial in the context of classical rate theory)
to modify the quantum flux-side time-correlation function so
that it also is non-zero in the t → 0+ limit.

III. WIGNER-MILLER TRANSITION-STATE THEORY

A. Exact quantum rate theory

To simplify the algebra, we consider a 1-dimensional
quantum scattering system with mass m, hamiltonian Ĥ , and a
potential V (q) which tends asymptotically to fixed limits and
has a barrier. However, we emphasise that everything we de-
rive below generalises immediately to multi-dimensional sys-
tems (see Sec. V) and also applies to condensed-phase sys-
tems (see the comments in the Introduction).

The exact quantum rate coefficient kQ(β) is given by4

kQ(β)Qr(β) = lim
t→∞ − d

dt
Css(t),

= lim
t→∞ Cfs(t), (10)

where the quantum side-side and flux-side time-correlation
functions are

Css(t) = Tr[e−βĤ/2ĥ(q‡)e−βĤ/2eiĤ t/¯ĥ(q‡)e−iĤ t/¯] (11)

and

Cfs(t) = Tr[e−βĤ/2F̂ (q‡)e−βĤ/2eiĤ t/¯ĥ(q‡)e−iĤ t/¯], (12)

and where

F̂ (q‡) = 1

2m
[p̂ δ(q̂ − q‡) + δ(q̂ − q‡) p̂] (13)

is the flux operator and ĥ(q‡) = h(q̂ − q‡) the side operator.

Now let us consider the t → 0+ limit. We rewrite Cfs(t)
as

Cfs(t) =
∫ ∞

−∞
dq2

∫ ∞

−∞
dz2

∫ ∞

−∞
d�2 h(z2 − q‡)

× 〈q2 − �2/2|e−βĤ/2F̂ (q‡)e−βĤ/2|q2 + �2/2〉
× 〈q2 + �2/2|eiĤ t/¯|z2〉
× 〈z2|e−iĤ t/¯|q2 − �2/2〉 (14)

(where the reason for the subscripts will become clear
shortly).

We then use the relations

lim
t→0+

e−iĤ t/¯ = e−iK̂t/¯e−iV̂ t/¯, (15)

where V̂ and K̂ are the potential and kinetic energy operators
respectively, and

〈x|e−iK̂t/¯|y〉 =
√

m

2πi¯t
eim(x−y)2/2¯t (16)

to obtain

lim
t→0+

Cfs(t) = 1

2π¯

∫ ∞

−∞
dq2

∫ ∞

−∞
dp2

∫ ∞

−∞
d�2

× h(q2 + p2t/m − q‡)eip2�2/¯

× 〈q2−�2/2|e−βĤ/2F̂ (q‡)e−βĤ/2|q2+�2/2〉.
(17)

This procedure is an example of linearization:27, 28, 54, 55 we
obtain a time-correlation function involving a Wigner trans-
form of the Boltzmannized flux operator, in which the dy-
namics is now classical (i.e., z2 ≡ q2t = q2 + p2t/m). At finite
times linearization is approximate, but in the t → 0+ limit
taken here it is clearly exact.

The statistics in the t → 0+ limit is therefore quantum,
but the dynamics is classical. However, it is difficult to use
the reasoning of Sec. II to explain why Cfs(t) tends smoothly
to zero in the t → 0+ limit, since the flux operator F̂ is em-
bedded in the quantum Boltzmann operator. Fortunately, we
can easily change this by inserting the identity

Î =
∫ ∞

−∞
dq1

∫ ∞

−∞
dz1

∫ ∞

−∞
d�1

× |q1 + �1/2〉〈q1 + �1/2|eiĤ t/¯|z1〉
× 〈z1|e−iĤ t/¯|q1 − �1/2〉〈q1 − �1/2|. (18)

This converts Eq. (14) into the expression

Cfs(t) =
∫

dq
∫

dz
∫

d� F̂(q1 − q‡)h(z2 − q‡)

×
2∏

i=1

〈qi−1 − �i−1/2|e−βĤ/2|qi + �i/2〉

× 〈qi + �i/2|eiĤ t/¯|zi〉
× 〈zi |e−iĤ t/¯|qi − �i/2〉, (19)
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FIG. 2. Schematic representations of the quantum flux-side time-correlation
functions in (a) Eq. (21) and (b) Eq. (22), showing the effect of making
the flux and side dividing surfaces the same function of path-integral space.
The solid lines represent imaginary-time propagation and the wavy arrows
forward-backward real-time propagation. The lower pair of diagrams repre-
sent the upper pair in the t → 0+ limit. In (a) the flux and side dividing
surfaces (blue line and red circle) are on opposite sides of the imaginary-time
path-integral, which gives a zero t → 0+ limit; in (b) they are in the same
place, giving a non-zero t → 0+ limit and hence the quantum TST of
Eq. (25).

where
∫
dq ≡ ∫ ∞

−∞dq1
∫ ∞
−∞dq2 etc., and

F̂(q1 − q‡) = 1

2m
[p̂1δ(q1 − q‡) + δ(q1 − q‡)p̂1], (20)

where we introduce the convention that the first term in
F̂(q1 − q‡) (after the square bracket) is inserted between
e−βĤ/2| q1 + �1/2〉 and 〈q1 + �1/2 |eiĤ t/¯ in Eq. (19), with
p̂1 acting only on | q1 + �1/2 〉 (via its adjoint), and the sec-
ond term is inserted between e−iĤ t/¯| q1 − �1/2〉 and 〈q1

− �1/2 |e−βĤ/2, with p̂1 acting only on 〈 q1 − �1/2 |. We
will use this convention throughout the article.

Equation (19) is identical to Eq. (14), since all we have
done is insert an identity, such that the imaginary time has
been split into two sections, separated by a forward-backward
real-time section (see Fig. 2). Using the relations in Eqs. (15)
and (16) to take the t → 0+ limit, we obtain

lim
t→0+

Cfs(t) = 1

(2π¯)2

∫
dq

∫
dp

∫
d�

× p1

m
δ(q1 − q‡)h(q2 + p2t/m − q‡)

×
2∏

i=1

eipi�i/¯
〈
qi−1−�i−1/2|e−βĤ/2|qi +�i/2〉

(21)

which is clearly identical to Eq. (17) [and may be obtained
from it more directly by inserting momentum states next to
F̂ (q‡), but we prefer this more circuitous route, for reasons
which will become clear in Sec. III B].

Equation (21) shows why Cfs(t) tends smoothly to zero as
t → 0+: it is because Cfs(t) is equivalent to the short-time clas-
sical flux of a two-dimensional system in which the flux and
side dividing surfaces are different functions of the coordi-
nates q; more formally, these surfaces are different functions
of (imaginary-time) path-integral space.

B. Derivation of Wigner-Miller TST

It follows from the above that if the flux and side dividing
surfaces are the same function of path-integral space then the
flux-side time-correlation function must have a discontinuity
at t = 0 and thus a non-zero t → 0+ limit. It is easy to modify
Cfs(t) so that it has this property; one simply changes the flux
dividing surface from q1 = q‡ to q2 = q‡ [see Fig. 2(b)]. The
resulting flux-side time-correlation function is then

C
[1]
fs (t) =

∫ ∞

−∞
dq

∫ ∞

−∞
dz

∫ ∞

−∞
d� F̂(q − q‡)h(z − q‡)

× 〈q − �/2|e−βĤ |q + �/2〉
× 〈q + �/2|eiĤ t/¯|z〉〈z|e−iĤ t/¯|q − �/2〉 (22)

with F̂(q − q‡) defined as in Eq. (20) and the [1]-superscript
indicating that the imaginary time propagator has been split
just once. It is straightforward to show (see Part II) that

kQ(β)Qr(β) = lim
t→∞ C

[1]
fs (t) (23)

and hence that C
[1]
fs (t) is a valid flux-side time-correlation

function whose t → ∞ limit gives the exact quantum rate.
Since the t → 0+ limit of C

[1]
fs (t) is non-zero, we can define a

quantum TST rate

k
‡
WM(β)Qr(β) = lim

t→0+
C

[1]
fs (t). (24)

It is clear that k
‡
WM(β) is equal to the exact rate kQ(β) if there

is no recrossing of the dividing surface (since then, by defini-
tion, C

[1]
fs (t) is constant in time). Hence it would seem that we

already have a working quantum generalization of classical
TST.

However, the explicit form of k
‡
WM(β) [obtained by ap-

plying the relations in Eqs. (15) and (16) to Eq. (22)] turns
out to be

k
‡
WM(β)Qr(β) = 1

2π¯

∫ ∞

−∞
dq

∫ ∞

−∞
dp

∫ ∞

−∞
d�

× p

m
δ(q − q‡)h(p)eip�/¯

× 〈q − �/2|e−βĤ |q + �/2〉. (25)

This is a well-known expression, having been introduced by
Wigner55, 56 in 1932, and proposed later by Miller5 as a pos-
sible quantum transition-state generalization to TST. Neither
of these authors was aware of Eq. (22) which is new (to the
best of our knowledge). Instead, they arrived at Eq. (25) using
heuristic arguments, based on quantum-classical correspon-
dence. We therefore expect k

‡
WM(β) to give a good approxi-

mation to kQ(β) only at high temperature and this turns out to
be the case.

Figure 3(a) plots C
[1]
fs (t)/Qr(β) for the example of an

Eckart barrier [with V (q) = V0 sech2(q/a), V0 = 0.425 eV,
a = 0.734 a0, and m = 1061 me], at an inverse temperature
kBβ = 1 × 10−3K−1.57, 58 Clearly the t → 0+ limit k

‡
WM(β)

is an excellent approximation to the exact rate at this (high)
temperature. However, at a lower temperature of kBβ = 3
× 10−3K−1 (Fig. 3(b)), k

‡
WM(β) has already completely bro-

ken down, giving a negative estimate of the rate. We will show
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FIG. 3. Plots of C(t)/Qr(β) versus time, where C(t) represents either the flux-
side time-correlation function C

[1]
fs (t) of Eq. (22) (solid black line) or Cfs(t)

of Eq. (12) (dashed line). The correlation functions were computed for an
Eckart barrier (see text), at the inverse-temperatures β and dividing surface-
positions q‡ shown.

below that Eq. (25) is only guaranteed to work above 2Tc,
where Tc is the cross-over temperature (see Sec. III C).

Before discussing this breakdown, however, we pause to
review the properties of Eq. (25) in the temperature range
(T > 2Tc) in which it does work, since these are the prop-
erties of a well-behaved t → 0+ quantum TST and are shared
by the more general t → 0+ quantum TST that we derive in
Sec. IV.

First, C
[1]
fs (t) is time-independent for a free-particle, for

which Eq. (25) thus gives the exact rate. The same is true for a
parabolic barrier, provided the dividing surface is chosen such
that q‡ = 0 (and also that T > 2Tc — we return to the case of
T < 2Tc below). It is straightforward (though algebraically
messy) to prove this last result: one uses the properties that
Eq. (25) is exact for a parabolic barrier55 (with q‡ = 0 and
T > 2Tc) and that linearization gives the exact quantum dy-
namics for a parabolic barrier;26 it then follows that Eq. (22)
is time-independent, since a classical trajectory originating at
q‡ = 0 cannot recross the dividing surface.

Second, for any realistic system, Eq. (22) will not be
time-independent because there will be some recrossing of
the optimal dividing surface. Just as in classical TST, there-
fore, one needs to locate a dividing surface which eliminates
most of the recrossing, and there are some systems (e.g., dif-

fusive reactions) for which no such surface exists and which
therefore cannot be adequately described by quantum TST.

Third, unlike classical TST, quantum TST is not a strict
upper bound to the exact rate. This is because, in a quantum
system, recrossing of the dividing surface does not necessar-
ily reduce the rate; real-time coherence effects may in fact
increase it, as is happening to a small extent in Fig. 3(a).
Hence one can only apply quantum TST when it is safe to
assume that real-time coherence has a small effect on the rate,
in which case the t → 0+ limit gives a good approximation to
an upper bound. One can then proceed (almost) as in classical
TST, choosing the (approximately) optimal dividing surface
to be the one that minimises the TST rate, which is what was
done in the calculation of Fig. 3(a). Moving the dividing sur-
face any appreciable distance away from the (approximately)
optimal dividing surface causes the quantum TST rate to be-
come exponentially too large [see Fig. 3(c)], just as in classi-
cal TST. This restriction that quantum TST is only applicable
if real-time coherence effects are small is only to be expected:
if coherence effects are large, one has no choice but to com-
pute the real-time quantum dynamics.59

C. Quantum statistics

We now return to why the quantum TST expression in
Eq. (25) breaks down below temperatures of 2Tc. It is clear
that the time-correlation function of Eq. (22) still gives the
exact rate in the t → ∞ limit (see Fig. 3(b)). The fault in
Eq. (22) is therefore not in the dynamics: it is a failure in the
treatment of the quantum statistics.

We can analyse the statistics by discretising imaginary
time, such that the statistical part of Eq. (22) is written as

〈q‡ − �1/2|e−βĤ |q‡ + �1/2〉

=
∫ ∞

−∞
dq2 . . .

∫ ∞

−∞
dqN 〈q‡ − �1/2|e−βN Ĥ |q2〉

×
[

N−1∏
i=2

〈qi |e−βN Ĥ |qi+1〉
]

× 〈qN |e−βN Ĥ |q‡ + �1/2〉, (26)

where βN = β/N. In the N → ∞ limit, this becomes

〈q‡ − �1/2|e−βĤ |q‡ + �1/2〉

= lim
N→∞

(
m

2πβN¯2

)N/2 ∫ ∞

−∞
dq2 . . .

∫ ∞

−∞
dqN

× e−m(q2−q‡+�1/2)2/2βN¯
2
e−βN V (q‡−�1/2)/2

×
[

N−1∏
i=2

e−m(qi+1−qi )2/2βN¯
2
e−βN V (qi )

]

× e−m(qN −q‡−�1/2)2/2βN¯
2
e−βN V (q‡+�1/2)/2. (27)

The right-hand side is a classical partition function for a poly-
mer “string” connecting the points q‡ ± �1/2. The quantum
statistics is dominated by fluctuations of the polymer string
around the minima on its potential energy surface.
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FIG. 4. Plot of f (�) = 〈−�/2|e−βĤ |�/2〉, for the Eckart barrier system at
kBβ = 3 × 10−3 K−1. Note the bimodal peaks caused by (spurious) half-
instantons (red line in inset) extending across the reaction barrier (black
curve).

To characterize these minima, we can use what we know
about stationary points on the related ring-polymer potential
surface.19, 20 In a ring polymer, the stationary points are dis-
cretised periodic orbits on the inverted molecular potential
energy surface −V , with period β¯. There is a cross-over
temperature Tc = 1/kBβc = ¯ωc/2πkB, where ωc is the imag-
inary frequency at the top of the barrier, such that when
T > Tc the system has insufficient time to complete an or-
bit and thus the only stationary point is the “trivial orbit,” in
which the system remains at rest, at the bottom of −V (i.e.,
on the barrier top) for a time β¯; when T < Tc, the system can
complete an orbit, which is referred to as the “instanton.” This
cross-over marks the transition between shallow tunnelling,
where the system penetrates the parabolic tip of the barrier,
and deep tunnelling, where it follows a more delocalised path
(and can cut corners19, 60 etc.). Another way to think of cross-
over is that, above Tc, the springs are too stiff to allow the
polymer to stretch over the top of the barrier; below Tc, the
springs are sufficiently weak that the polymer can stretch over
the barrier and relax into the geometry corresponding to the
discretised instanton orbit. For the special case of a parabolic
barrier, there is nothing in the ring-polymer potential to stop
the polymer stretching indefinitely below Tc, where the rate is
therefore undefined.

For the linear polymer in Eq. (26), the end-points are con-
strained to be symmetric about q‡, so the stationary points are
now classical trajectories (on −V ) connecting the end points
in time β¯; they need not be periodic orbits. Also, the polymer
is not a ring, but a string, and so the force constant associated
with relaxation into an instanton is half that of a ring-polymer.
As a result, the polymer relaxes over the top of the barrier at
T = 2Tc, to form half a periodic orbit (or a “half-instanton”).
It is these half-instantons that cause the rate to be negative in
the Eckart barrier calculation of Fig. 3(b). Figure 4 plots the
quantum Boltzmann matrix used to obtain Fig. 3(b). The two
peaks at � = ±1.7 a.u. are produced by two half-instantons,
which are minima on the linear-polymer potential surface.61 It
is clear that these half instantons, and the fluctuations around
them which dominate the Boltzmann matrix, are spurious.62

For a parabolic barrier, the behaviour of Eq. (25) below
T = 2Tc is even more disastrous, since the rate becomes unde-
fined in the range 2Tc > T > Tc (where it should be finite).63

These statistical problems are symptoms of a fundamen-
tal flaw. In choosing a dividing surface which is a single

point we have constrained the quantum Boltzmann distribu-
tion in such a way as to make it non-positive-definite. At high
temperatures, the errors in the statistics are small. But be-
low 2Tc, the errors are big enough to dominate the TST rate,
giving negative or undefined rates as just described. It will
become clear below that the reason the statistics is non-
positive-definite is that the single-point constraint has de-
stroyed the invariance of the quantum Boltzmann distribution
to imaginary-time translation.

IV. QUANTUM TST WITH CORRECT STATISTICS

We now construct a general flux-side time-correlation
function which is invariant to imaginary-time translation, and
which, like Eq. (22), uses the same function of path-integral
space for the flux and side dividing surfaces. We will find be-
low that this condition gives a quantum TST for which the
t → 0+ quantum statistics is positive-definite, thus avoiding
the statistical problems just described.

A. Generalized Kubo-transformed side-side
time-correlation function

We construct first a side-side time-correlation function
which is invariant to imaginary-time translation. We take the
quantum partition function for the system, insert the iden-
tity of Eq. (18) at N equally spaced imaginary-time intervals
βN ≡ β/N, and introduce a dividing surface f(q) which is
symmetric under cyclic permutation of the N coordinates q
≡ {qi}. This results in the side-side time-correlation function

C[N]
ss (t) =

∫
dq

∫
dz

∫
d� h[f (q)]h[f (z)]

×
N∏

i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× 〈qi + �i/2|eiĤ t/¯|zi〉〈zi |e−iĤ t/¯|qi − �i/2〉,
(28)

where
∫

dq ≡ ∏N
i=1

∫
dqi etc. and i = 1. . . N are defined

cyclically. We then take the N → ∞ limit, in which the per-
mutational symmetry of f(q) ensures that C[N]

ss (t) is invariant
to imaginary-time translation.

Two examples of functions f(q) that are invariant to
cyclic permutation of the coordinates are the centroid dividing
surface

f (q) = q0 − q‡, (29)

where q0 = ∑N
i=1 qi/N and q‡ is a parameter that locates the

surface, and the cone

f (q) = cos φ q0 + sin φ√
N

∣∣∣∣∣∣
N∑

j=1

ei2πj/Nqj

∣∣∣∣∣∣ − q‡, (30)

where φ determines the pitch of the cone. These simple func-
tions will often be sufficient to give a good dividing sur-
face in Eq. (28) (see Sec. IV E), but of course more general
permutationally-invariant functions might sometimes need to
be used.64
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Time-correlation functions with the structure of Eq. (28)
have not appeared before in the reaction dynamics literature.
However, the interpretation of such a function in the N → ∞
limit is simple: it correlates a property of the entire imaginary-
time Feynman path at time t = 0 with the same property at
some later time t. This would seem to be the most general
way to construct a quantum time-correlation function.65 It is
easy to show that the integral would collapse to a standard
Kubo-transformed time-correlation function if the heaviside
functions in Eq. (28) were replaced by linear operators. We
may therefore regard Eq. (28) as a generalization of the Kubo
transformed time-correlation function to non-linear operators.

B. Quantum TST

It is straightforward to obtain the corresponding flux-side
time-correlation function and to take the t → 0+ limit, thus
obtaining a t → 0+ quantum TST in which the quantum statis-
tics is now invariant to imaginary-time translation. Differenti-
ating C[N]

ss (t) with respect to t, we obtain (see supplementary
material66)

C
[N]
fs (t) =

∫
dq

∫
dz

∫
d� F̂[f (q)]h[f (z)]

×
N∏

i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× 〈qi + �i/2|eiĤ t/¯|zi〉〈zi |e−iĤ t/¯|qi − �i/2〉
(31)

with

F̂[f (q)] = 1

2m

N∑
i=1

{
p̂i

∂f (q)

∂qi

δ̂[f (q)] + δ̂[f (q)]
∂f (q)

∂qi

p̂i

}
,

(32)

where we employ a similar convention to Eq. (20) (i.e.,
the first term is inserted between e−βN Ĥ | qi + �i/2〉 and 〈qi

+ �i/2|eiĤ t/¯ in Eq. (31), with p̂i acting only on | qi + �i/2 〉,
and so on). Equation (31) is written out in full in Appendix A.
We will refer to F̂[f (q)] as the “ring-polymer flux operator,”
since it gives the collective flux normal to the ring-polymer
dividing surface f(q); this flux is invariant to imaginary-time
translation in the N → ∞ limit. Note that Eq. (31) reduces
to Eq. (22) in the special case that N = 1. A schematic il-
lustration of C

[N]
fs (t) is shown in Fig. 5 (for the case of N

= 3). For a discussion of the t → ∞ behaviour of C
[N]
fs (t),

see Sec. IV E.
To take the t → 0+ limit, we use Eqs. (15) and (16) as

before and obtain

lim
t→0+

C
[N]
fs (t)

= 1

(2π¯)N

∫
dq

∫
dp

∫
d�δ[f (q)] S(q, p)h[f (qt )]

×
N∏

i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉eipi�i/¯,

(33)

FIG. 5. Schematic representation (following Fig. 2) of the generalized Kubo
flux-side time-correlation function C

[N]
fs (t) of Eq. (31), for the special case

N = 3. The flux and side dividing surfaces are now permutationally invariant
functions f(q) of the initial (blue dashed lines) and final (red circles) ring-
polymer coordinates q and z. The smaller diagram below shows the effect of
taking the t → 0+ limit.

where

S(q, p) = 1

m

N∑
i=1

∂f (q)

∂qi

pi (34)

and qt = q + pt/m. This limit is time-independent and non-
zero because the flux and side dividing-surfaces are the same;
i.e.,

lim
t→0+

f (qt ) = f (q) + S(q, p)t, (35)

and hence

lim
t→0+

δ[f (q)]h[f (qt )] = δ[f (q)]h[S(q, p)]. (36)

We can therefore define a quantum TST as the limit

k
‡
Q(β)Qr(β) = lim

t→0+
lim

N→∞
C

[N]
fs (t). (37)

Substituting Eq. (36) into Eq. (33), we obtain

k
‡
Q(β)Qr(β)

= lim
N→∞

1

(2π¯)N

∫
dq

∫
dp

∫
d�

× δ[f (q)] S(q, p)h[S(q, p)]

×
N∏

i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉eipi�i/¯.

(38)

This expression is an N-bead generalization (in the limit
N → ∞) of Eq. (25) and can be regarded as an N-fold general-
ization of a Wigner transform (which was obtained by taking
the t → 0+ limit and thus linearizing exactly the dynamics at
N imaginary-time intervals in the Boltzmann operator).67

C. Positive-definite quantum statistics

We now prove that the invariance of the dividing sur-
face f(q) to imaginary time-translation (in the N → ∞ limit)
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ensures that Eq. (38) gives positive-definite quantum statistics
at all temperatures. This proof is not too difficult because, as
we now show, all N of the Fourier transforms can be evalu-
ated analytically. (This is another advantage over Eq. (25), in
which the single Fourier transform must usually be evaluated
numerically.) The trick is to apply the q-dependent orthogonal
coordinate transformation

(p,�) → (P, D) (39)

to the integrand in Eq. (38), where

Pj (q) =
N∑

i=1

piTij (q),

Dj (q) =
N∑

i=1

�iTij (q), j = 0 → N − 1, (40)

and

Ti0(q) = 1√
BN (q)

∂f (q)

∂qi

(41)

with

BN (q) =
N∑

i=1

[
∂f (q)

∂qi

]2

(42)

and the other elements of T(q) can be chosen in any way that
makes T(q) orthogonal. The variable P0(q) describes the mo-
mentum perpendicular to the dividing surface f(q) at the point
q. On applying this transformation, we obtain an expression
containing N − 1 Dirac-delta functions in Dj, (j = 1 → N
− 1), which can be integrated out to give

k
‡
Q(β)Qr(β)

= 1

(2π¯)N

∫
dq

∫
dP0

∫
dD0

× δ[f (q)]
√

BN (q)
P0

m
h(P0) eiP0D0/¯

×
N∏

i=1

〈qi−1 − Ti−1 0(q)D0/2|e−βN Ĥ |qi + Ti0(q)D0/2〉.

(43)

This equation resembles a symmetrised version of Eq. (25),
with only one Fourier transform involving a “stretching” vari-
able D0. However, in contrast to Eq. (25), where the stretch
� is concentrated at one point in the ring-polymer loop, D0

describes a concerted stretch which is smeared out gradually
around the loop, such that the separation between adjacent
ring-polymer sections tends to zero in the N → ∞ limit (since
normalisation ensures that Ti0 ∼ N−1/2).

In Appendix B, we prove that Eq. (43) simplifies further.
First, the smearing-out of D0 around the loop ensures that the
potential energy terms V [qi ± Ti0(q)D0/2] become indepen-
dent of D0 in the N → ∞ limit. Second, the invariance of f(q)
to imaginary-time translation ensures that there are no cross-
terms between D0 and q. As a result, Eq. (43) simplifies to

k
‡
Q(β)Qr(β) = lim

N→∞
1

(2π¯)N

∫
dq

∫
dP0

∫
dD0

× δ[f (q)]
√

BN (q)
P0

m
h(P0)

× e−mD2
0/2βN¯

2
eiP0D0/¯

N∏
i=1

〈qi−1|e−βN Ĥ |qi〉,

(44)

i.e., the Boltzmann distribution has a simple Gaussian depen-
dence on just the one variable D0. It is therefore positive-
definite at all temperatures and incapable of giving the sort
of bimodal dependence (seen in Fig. 4) that causes Eq. (25) to
break down at T < 2Tc.

D. Emergence of RPMD-TST

We can simplify this expression still further by integrat-
ing over D0, which has the effect of joining up the N sections
of the ring-polymer into a continuous loop

k
‡
Q(β)Qr(β) = lim

N→∞
1

(2π¯)N

∫
dq

∫
dP0

× δ[f (q)]
√

BN (q)
P0

m
h(P0)

×
√

2πβN¯2

m
e−P 2

0 βN/2m

N∏
i=1

〈qi−1|e−βN Ĥ |qi〉.

(45)

We then make the substitution

lim
N→∞

〈qi−1|e−βN Ĥ |qi〉

=
√

m

2πβN¯2
e−m(qi−qi−1)2/2βN¯

2
e−βN [V (qi )+V (qi−1)]/2 (46)

and convert N − 1 of the normalisation factors
√

m/2πβN¯2

into integrals over exp(−P 2
j βN/2m), where j = 1 → N − 1.

Transforming back from P to p, we obtain

k
‡
Q(β)Qr(β) = lim

N→∞
1

(2π¯)N

∫
dq

∫
dp

× δ[f (q)] S(q, p)h[S(q, p)]

×
N∏

i=1

e−m(qi−qi−1)2/2βN¯
2
e−βN V (qi )e−p2

i βN /2m,

(47)

where S(q, p) is defined as in Eq. (34).
Equation (47) is identical to the N → ∞ limit of a clas-

sical TST expression, in which the reciprocal temperature is
βN, the dividing surface is f(q), and the Hamiltonian is

H (q, p) =
N∑

i=1

p2
i

2m
+

N∑
i=1

[
m(qi − qi−1)2

2(βN¯)2
+ V (qi)

]
. (48)

Remarkably, these are precisely the conditions that define
RPMD-TST. We can thus write

k
‡
Q(β) ≡ k

‡
RPMD(β), (49)
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where it is understood that the RPMD calculation uses
N → ∞ beads (which in practice means that N is increased
until numerical convergence is reached) and that the RPMD
dividing surface f(q) is invariant under cyclic permutation of
the polymer beads.

Hence in deriving Eq. (47), we have found that RPMD
rate-theory, which was originally conceived using heuristic
arguments31, 32 (and for which the best justification until now
was that it interpolated correctly between various limits20) is
the unique65 t → 0+ quantum TST that gives positive-definite
statistics.

E. Long-time behaviour and choice of optimal
dividing-surface

In general, C
[N]
fs (t) of Eq. (31) does not give the exact

quantum rate in the t → ∞ limit, but must be added to cor-
rection terms which can only be derived in closed form in
special cases. However, we will prove in Part II that these
correction terms are zero if there is no recrossing of f(q) (or
of surfaces perpendicular to f(q) in ring-polymer space) and
hence that k

‡
Q(β) gives the exact quantum rate kQ(β) in the

absence of recrossing. In this respect, the relation between
k
‡
Q(β) and kQ(β) is thus the same as that between k

‡
C(β) and

kC(β) in classical TST. However, unlike classical TST, k
‡
Q(β)

does not give a strict upper bound to kQ(β). That this is so
is evident from previous benchmark comparisons of RPMD-
TST, where k

‡
Q(β) was found20 to underestimate the rates for

symmetric barriers below cross-over.
Hence, just as with k

‡
WM(β) of Sec. III, one can apply

k
‡
Q(β) only if real-time quantum coherence effects are small,

in which case k
‡
Q(β) gives a good approximation to an upper

bound to kQ(β). One can then proceed exactly as in a practi-
cal RPMD calculation, by taking the (near) optimal dividing
surface to be the surface that maximises the free-energy of the
ring-polymer ensemble. The restriction that f(q) be invariant
under cyclic permutation of the beads is not an additional con-
straint, since a little thought shows that any dividing surface
that maximises the ring-polymer free energy must necessarily
have this property.

From the extensive previous work on RPMD20, 31–41 and
centroid-TST,42–46 therefore, we already know a lot about the
likely form of the optimal dividing surface in k

‡
Q(β). It is

worth summarising these findings here. For a parabolic barrier
or free particle, the optimal dividing surface is the centroid; in
fact we will show (in Part II) that the centroid-dividing surface
makes C

[N]
fs (t) time-independent and equal to the exact rate

for these systems. For real systems, there are two tunnelling
regimes separated by a cross-over temperature Tc (see
Sec. III C): for T > Tc, the statistics is dominated by fluc-
tuations around a point and so the centroid is usually also
a good dividing surface; for T < Tc, the centroid is also a
good dividing surface, provided the temperature is not too
low and provided the barrier is reasonably symmetric; for a
strongly asymmetric barrier, however, centroid-TST breaks
down,20, 46 since it is necessary to let the ring polymers stretch
over the barrier, using a cone-like dividing surface such as Eq.

(30). Hence centroid-TST often works, but is a special case of
RPMD-TST, which Secs. IV A–IV D have shown arises nat-
urally as the most general form of t → 0+ flux which gives
positive-definite quantum statistics.

F. Numerical considerations

1. Value of N needed to give good quantum statistics

In Sec. IV D we showed that the expression given in
Eq. (38) for k

‡
Q(β) simplifies to the RPMD-TST expression

of Eq. (47) and that this occurs because the dividing surface
f(q) becomes invariant to imaginary-time-translation in the
N → ∞ limit. However, in a practical calculation N will
be finite and treated as a numerical convergence parameter.
The question then arises as to how big N needs to be to en-
sure that Eq. (38) gives sufficiently good numerical agree-
ment with Eq. (47), indicating that this value of N gives an
f(q) which, although not perfectly invariant to imaginary-time
translation, is sufficiently close to it. In a practical RPMD cal-
culation, N is often quite large (e.g., N = 10–100 is needed to
converge the rate for a hydrogen-transfer reaction at temper-
atures not too far below cross-over;20 N = 1000 for electron-
transfer reactions40). However, given that just N = 1 is suf-
ficient to achieve a good approximation to positive-definite
quantum statistics for T > 2Tc, it is likely that most of the
beads are needed to evaluate numerically the Boltzmann ma-
trix and that the value of N needed to give a good approxima-
tion to positive-definite quantum statistics is much smaller.

This turns out to be the case. Table I shows a compar-
ison between numerical evaluations of Eq. (38) (done using
quantum wave-packet methods) and the RPMD-TST Eq. (47)
(done using Monte Carlo sampling of ring-polymer space).
The value of N needed in Eq. (38) to obtain good numerical
agreement with Eq. (47) is still only N = 4 at a temperature of
kBβ = 4 × 10−3 K−1, which is significantly below the cross-
over temperature of kBβc = 2.69 × 10−3 K−1. Hence, as ex-
pected, most of the beads used to evaluate the RPMD-TST
expression Eq. (47) are required to evaluate the Boltzmann
operator numerically, with only a few being required to give
a good approximation to positive-definite quantum statistics.
We should emphasise that, despite needing many more beads,
the ring-polymer expression Eq. (47) is of course vastly more
efficient to evaluate than Eq. (38).

2. Comparison with the LSC-IVR method

There is evidently a close link between the RPMD-
TST and LSC-IVR26–28 methods, since both are consistent
with linearization approximations to an exact flux-side time-
correlation function. In RPMD-TST, one linearizes C

[N]
fs (t)

and takes the t → 0+ limit (in which the linearization is exact)
and in the LSC-IVR method one linearizes Cfs(t) and propa-
gates the linearized trajectories for a finite time t > 0. Clearly
both methods ignore the effects of real-time quantum coher-
ence and thus we can expect them to make predictions of the
rate that are of comparable accuracy. A preliminary compar-
ison of the results in Table I with those of Ref. 28 suggest
that this is indeed the case. For example, both methods make
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TABLE I. Comparison of t → 0+ quantum TST rates computed for the Eckart barrier system (see text) using Eq. (43), with N = 1–4, and using the RPMD-TST
expression of Eq. (47), with a value of N sufficient to converge the results to within 0.5%. The exact quantum results (QM) are also shown.

kBβ/10−3K−1 N = 1 N = 2 N = 3 N = 4 RPMD (N) QM

1 13.26 13.49 13.50 13.50 13.51 (8) 14.15
2 8.76 × 10−2 0.1336 0.1342 0.1343 0.136 (8) 0.1501
3 −1.026 × 10−2 2.794 × 10−3 2.804 × 10−3 2.811 × 10−3 2.81 × 10−3 (32) 3.485 × 10−3

4 −5.701 × 10−3 1.467 × 10−4 1.409 × 10−4 1.430 × 10−4 1.42 × 10−4 (256) 2.044 × 10−4

predictions that are within 20%-30% of the exact quantum
rate at temperatures of T = 250 K and 333 K. More system-
atic comparisons of the two methods would be a good subject
for future research.

V. GENERALIZATION TO MULTI-DIMENSIONS

The treatment of Sec. IV generalizes immediately to
multi-dimensional systems and we now summarise how this
can be done.

Without loss of generality, we can represent the space
of an F-dimensional system using cartesian coordinates
qj, j = 1 → F, with a mass mj associated with coordinate
qj. We can also define ring-polymer coordinates q ≡ {qi, j}
and analogous generalizations of p, �, etc., where each i = 1
→ N labels a different replica of the system.

We can then construct the multi-dimensional version of
C

[N]
fs (t) by inserting N identities analogous to Eq. (18) into

the quantum partition function, introducing a dividing surface
f(q), which is invariant under collective cyclic permutations of
the coordinates q (i.e., cyclic permutation among the N repli-
cas), and differentiating with respect to time. This gives an
expression analogous to Eq. (31), with the replacements

|qi + �i/2〉 → |qi,1 + �i,1/2, . . . , qi,F + �i,F /2〉 (50)

and so on, and in which the ring-polymer flux operator is

F̂[f (q)]

=
F∑

j=1

1

2mj

N∑
i=1

{
p̂i,j

∂f (q)

∂qi,j

δ̂[f (q)] + δ̂[f (q)]
∂f (q)

∂qi,j

p̂i,j

}

(51)

and is inserted around the ring in a manner analogous to
F̂[f (q)] of Eq. (32).

The rest of the derivation in Sec. IV can then be followed
step-by-step. We take the t → 0+ limit of C

[N]
fs (t), to obtain an

expression analogous to Eq. (33) in which S(q, p) is defined
according to

S(q, p) =
F∑

j=1

1

mj

N∑
i=1

∂f (q)

∂qi,j

pi,j . (52)

We then carry out a coordinate transformation analogous to
Eqs. (39) and (40), in which P0(q) is the momentum orthog-
onal to the dividing surface f(q), and follow the rest of the
derivation in Sec. IV and Appendix B. As in Sec. IV C, the
imaginary-time-translation invariance of f(q) in the N → ∞

limit is essential in arriving at the final result, which is simply
RPMD-TST in multiple dimensions.

VI. CONCLUSIONS

The results of this article are surprising, since it has been
widely assumed that a true quantum TST, in the form of a
non-zero t → 0+ limit of a quantum flux-side time-correlation
function, does not exist. This article has shown that such a
limit does exist (and the forthcoming Part II will show that
it gives the exact quantum rate in the absence of recrossing).
Remarkably, the t → 0+ limit gives expressions for the rate
which are identical to two results obtained previously as edu-
cated guesses. One of these is Wigner’s expression,5, 55 which
we found is indeed a t → 0+ quantum TST, but which gives
bad (i.e., non-positive-definite) quantum statistics at low tem-
peratures. The other is RPMD-TST, in which the use of a di-
viding surface which is invariant to imaginary-time transla-
tion guarantees that the t → 0+ limit gives positive-definite
quantum statistics. As a result, RPMD-TST appears to be the
unique65 t → 0+ quantum TST that gives the correct quantum
statistics at all temperatures.

Unlike classical TST, RPMD-TST does not give a strict
upper bound to the exact quantum rate. Instead, it gives a
good approximation to an upper bound, provided real-time
quantum coherence does not significantly affect the rate. In
such cases, the optimal dividing surface is close to the surface
that maximises the free-energy of the ring-polymers. In the
shallow-tunnelling regime, this surface is the centroid, which
explains why centroid-TST42–45 (i.e., RPMD-TST using a
centroid dividing surface) works in this regime. Centroid-
TST also works below the cross-over to deep tunnelling if
the barrier is symmetric, but breaks down for asymmetric bar-
riers, since the optimal dividing surface then involves ring-
polymer stretching coordinates. In the high-temperature limit,
quantum coherence vanishes, and classical TST emerges from
RPMD-TST as a special limiting case.

To derive RPMD-TST, we used the property that
the linearization approximation26–28 of the flux-side time-
correlation function is exact in the t → 0+ limit, where the
dynamics can be represented (without approximation) by an
ensemble of classical free particles, with initial positions dis-
tributed along (imaginary-time) Feynman paths. We showed
that the standard flux-side time-correlation function correlates
the initial flux of a particle located at a single point on any
given path, with the side of a particle located at a different
point (on the same path). In other words, the flux and side di-
viding surfaces are different functions of path-integral space,
which is why the time-correlation function tends smoothly
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to zero as t → 0+. We then introduced a generalized Kubo-
transformed flux-side time-correlation function, which allows
one to use the same flux and side dividing surfaces; it is this
property that gives the non-zero t → 0+ limit (i.e., RPMD-
TST).

In a practical RPMD simulation,31–41 one does not usu-
ally compute the RPMD-TST rate directly; instead, one com-
putes the exact classical rate in the extended (fictitious) space
of the ring-polymers, thus obtaining a lower bound to the
RPMD-TST rate. This exact RPMD rate will be a good ap-
proximation to the exact quantum rate provided the TST ap-
proximation holds good in both the (true, physical) quantum
space and the (fictitious) classical ring-polymer space. Hence,
provided real-time quantum coherence is not important, and
provided the TST assumption (that the reaction is dominated
by a free-energy bottleneck) holds, we can be confident that
an RPMD simulation will give a good approximation to the
exact quantum rate.
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APPENDIX A: GENERALIZED KUBO FLUX-SIDE
TIME-CORRELATION FUNCTION

Equation (31) written out in full is

C
[N]
fs (t)

= 1

2m

∫
dq

∫
dz

∫
d� h[f (z)]

×
N∑

i=1

[
〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× {L̂i(q)〈qi + �i/2|eiĤ t/¯|zi〉〈zi |e−iĤ t/¯|qi − �i/2〉
+ 〈qi + �i/2|eiĤ t/¯|zi〉〈zi |e−iĤ t/¯|qi − �i/2〉R̂i(q)}

×
N∏

j=1,j �=i

〈qj−1 − �j−1/2|e−βN Ĥ |qj + �j/2〉

× 〈qj + �j/2|eiĤ t/¯|zj 〉〈zj |e−iĤ t/¯|qj − �j/2〉
]

(A1)

with

L̂i(q) = p̂i δ̂i[f (q)]
∂f (q)

∂qi

,

R̂i(q) = ∂f (q)

∂qi

δ̂i[f (q)] p̂i , (A2)

and where we employ the convention that the p̂i operator in
L̂i(q) acts only on the neighbouring ket | qi + �i/2 〉 and the
p̂i operator in R̂i(q) acts only on the neighbouring bra
〈 qi − �i/2 |. Note that there are a variety of other ways to in-
clude the flux operators (e.g., replacing each L̂i(q) and R̂i(q)
in Eq. (A1) by [L̂i(q) + R̂i(q)]/2), all of which are equivalent
to Eq. (A1).

APPENDIX B: INTEGRATION OF THE STRETCHING
MODE

To prove the link between Eqs. (43) and (44), we first
write

lim
N→∞

N∏
i=1

〈qi−1 − Ti−1 0(q)D0/2|e−βN Ĥ |qi + Ti0(q)D0/2〉

= lim
N→∞

(
m

2πβN¯2

)N/2

×
N∏

i=1

e−m{qi−qi−1+D0[Ti−1 0(q)+Ti0(q)]/2}2/2βN¯
2

× e−βN {V [qi−Ti0(q)D0/2]+V [qi+Ti0(q)D0/2]}/2. (B1)

We then note that

Ti0 ∼ N−1/2 (B2)

and hence that
βN

2
{V [qi + Ti0(q)D0/2] + V [qi − Ti0(q)D0/2]}

= βN [V (qi) + O(D2
0N

−1)], (B3)

which gives

lim
N→∞

e−βN {V [qi−Ti0(q)D0/2]+V [qi+Ti0(q)D0/2]}/2

= e−βN [V (qi−1)+V (qi )]/2. (B4)

In other words, the D0-dependence disappears from the po-
tential terms in the N → ∞ limit, where D0 describes a
“breathing” mode involving the collective opening and clos-
ing of a sequence of infinitesimal gaps distributed continu-
ously around the ring-polymer loop.

To deal with the kinetic terms, we assume that the divid-
ing surface f(q) has been chosen to be a smooth function of
path integral space, such that

Ti0(q) = T (τi, q), (B5)

where T(τ , q) is a smooth function of the imaginary time τ ,
evaluated at τ i = (i − 1)βN¯. We then expand Ti±1 0(q) as

Ti±1 0(q) = Ti0(q) ± βN¯Ṫi0(q) + O(β2
N ), (B6)

where Ṫi0(q) = ∂T (τ, q)/∂τ |τ=τi
, and expand the square in

the third line of Eq. (B1) into three terms. The first term gives
the usual ring-polymer expression

N∏
i=1

e−m(qi−qi−1)2/2βN¯
2
; (B7)

the second term gives

lim
N→∞

N∏
i=1

e−mD2
0 [Ti−1 0(q)+Ti0(q)]2/8βN¯

2 = e−mD2
0/2βN¯

2
, (B8)

where the simplification on the righthand side is easily shown
to result from Eq. (B6); the third term gives

N∏
i=1

e−m(qi−qi−1)D0[Ti−1 0(q)+Ti0(q)]/2βN¯
2 = e−g(r)D0/¯, (B9)
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where

g(r) = m

2βN¯

N∑
i=1

(qi+1 − qi−1)Ti0(q). (B10)

Now, the dividing surface is invariant under imaginary-time
translation, i.e.,

Pi→i+1f (q) = f (q), (B11)

where Pi→i+1 denotes a cyclic permutation of the ring-
polymer beads, such that qi → qi+1. Since qi − qi−1 → 0
as N → ∞, it follows that

lim
N→∞

(Pi→i+1 − Pi→i−1)f (q)

= lim
N→∞

N∑
i=1

(qi+1 − qi−1)
∂f (q)

∂qi

,

= 0. (B12)

Using Eq. (41) to replace ∂f(q)/∂qi by Ti0(q), we obtain

lim
N→∞

g(r) = 0. (B13)

Hence the term given in Eq. (B9) tends to unity as N → ∞,
with the result that Eq. (43) gives Eq. (44). Note that this
would not have happened if Eq. (B11) did not hold. The
imaginary-time-translational invariance of f(q) is therefore es-
sential for Eq. (43) to reduce to Eq. (44).
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fs (t) to
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indefinitely on either side of the barrier. Interestingly, this problem is shared
by Eq. (12), which means that, until Eq. (31) of this work (see Sec. IV B),
there was no quantum flux-side time-correlation function capable of giving
the correct parabolic barrier rate throughout the entire T > Tc temperature
range across which it is finite.
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forms of the identity Eq. (18), and inserting this in slightly different
places in the Boltzmann operator), but all of these expressions tend to
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N → ∞ limit.

66See supplementary material at http://dx.doi.org/10.1063/1.4792697 for the
algebra, which is straightforward but lengthy.

67A much quicker way to derive Eq. (38) is first to take the t → 0+
limit of C

[N]
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We have followed the longer derivation in order to establish the form of
C

[N]
fs (t).
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