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We extend the Mixed Quantum-Classical Initigad\ue resentation (MQC-IVR), a

semiclassical method for computing real-time cosgelation functions, to electronically

nonadiabatic systems using the Meyer;M —qu:k—Thoss (MMST) Hamiltonian in

order to treat electronic and nucleag degr S freedom (dofs) within a consistent

dynamic framework. We introduc:\ékwient symplectic integration scheme, the

MInt algorithm, for numerical ti e_ovolubion of the phase space variables and Mon-

odromy matrix under the norﬁiralb MMST Hamiltonian. We then calculate the
ou

probability of transmission N a curve-crossing in model two-level systems and
show that in the quant&\ QC-IVR is in good agreement with the exact quan-
aﬁilhe assical limit the method yields results in keeping with

tum results, wher

classical limit approachés like the Linearized Semiclassical IVR. Finally, exploiting

the ability o MQC-I to quantize different dofs to different extents, we present

a detaile ée extents to which quantizing the nuclear and electronic dofs

impr es})_lmer 1 convergence properties without significant loss of accuracy.
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Publishihg INTRODUCTION

The development of theoretical methods for the simulation of electronically nonadiabatic
processes remains a central challenge in the effort to understand the mechanisms of pho-

2-5

tochemical reactions,! charge transfer in complex chemical and bi ogical systems,* and

hot-electron generation via inelastic scattering.57

e symmetrical quasi-

Over the past two decades, several methods for the simulat nonadlabatlc processes
have been developed including exact quantum time-prop \

classical windowing method,*! mixed quantum—classical a:éfﬁs.methods 12714 and surface
hopping.!®22 In addition, approximate path-integra basedin hods such as ring polymer

23-27

molecular dynamics and centroid moleculay dyna have also been extended to

imate methods fail to capture nuclear

nonadiabatic systems.?*%® However, while ex¢t (Uantum methods are limited to a small
number of degrees of freedom (dofs), the m@
quantum coherence effects.

Semiclassical (SC) methods for the calctlation of real-time correlation functions, like the
Double Herman-Kluk (DHK) Inj 1N‘Representatlon (IVR),3 43 accurately describe
both electronic and nuclear her cts in nonadiabatic systems.?*% Unfortunately,
much like exact quantum meth high computational cost of numerically converging
oscillatory integrals hasdimited these methods to low-dimensional systems. Efforts to mit-
igate the sign probl ha.n’lb to the development of more approximate methods such as
the linearized (IfC)- 5073 that fail to capture nuclear quantum coherence effects, and
various forward-bac

ard (FB) methods that are either less accurate or computationally

The recently-introduced Mixed Quantum-Classical (MQC)-IVR method%3:64

expensive.’

employs 4_modified, Filinov filtration (MFF) scheme®% ™ to damp the oscillatory phase
of thefintegrand and has been shown to improve numerical convergence without significant
loss _Qf Culr&yﬁ?”""l Specifically, the filtering parameters employed in MQC-IVR modify the
extent tG)Which a particular dof contributes to the overall phase of the integrand, effectively
vy

In this paper we extend MQC-IVR to the simulation of nonadiabatic processes by us-

g the ‘quantumness’ of that mode.%*

ing the Meyer-Miller-Stock-Thoss (MMST)"®"" mapping to obtain a continuous Cartesian
variable representation of both the electronic and nuclear dofs. We begin by introducing an

efficient symplectic integration scheme, the MInt algorithm, for classical trajectory propa-
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Publishi@zg on under the non-separable MMST Hamiltonian. We then calculate the transmission
probability using MQC-IVR in a series of model two-level systems with a single curve cross-
ing. We numerically demonstrate that in the limit of a weak filter MQC-IVR agrees well
with exact quantum results, and as the filter strength is increased MQC-IVR results start
to resemble classical limit methods like the LSC-IVR. We also undeftake a systematic inves-
tigation of the balance between accuracy and efficiency achiev b$ quautizing the nuclear
and electronic dofs to different extents.

This paper is organized as follows. In section II we b e iew the MQC-IVR theory
and provide an overview of the MInt algorithm. Sectlon 'd’escrlbes the model systems
studied here and section IV outlines simulation deta S. Ressllt are discussed in Section V

and we present our conclusions in Section VI.

II. THEORY \
A. MQC-IVR E\

The quantum real-time correl&%cm on™" between two operators A and B is defined

as \

CAB t) AeﬁHtBe *Ht] , (1)

where H is the system ﬁam onian. For the remainder of the paper we use atomic units
where h = 1. I’GR correlation function is derived by using the Herman-Kluk
(HK-IVR) appro mat 1 for the forward and backward time-evolution operators in Eq. (1),
followed by a c 1ge of variables, and an MFF of the resulting integrand. The final expres-

sion is giv éy64

ﬁ&s Cap(t) 2N/dzo/dz0 fal )
ks X e [St(ZO St(ZO)]D (Z07Z07 (¢ 7077t)

N8 e oL »

where zy = (Ry, %0, Po, po) and z; = (Ry, x{,, Py, py) are a pair of initial phase space vec-
tors containing both nuclear (R, P) and electronic (x, p) variables associated with classical

trajectories of length ¢ and action S;(z¢) and Si(z;), respectively. The full dimensionality of

3
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Publishitig system is given by N = F' + G where I and G are the dimensionality of the electronic
and nuclear phase space vectors, respectively. The phase space displacement between the
trajectory pair at time zero is given by A,, = z{ — zo. The functional form of the pref-
actor, Dy (2o, 2y; €, Yo, Vt), is provided in Appendix A. The coherent state wavefunctions in

momentum and position space are given by

- 1 1
Pplay) = ([ ———
(Pplz) (detmw) ¢

X e*%(f’*?t)T(f’*pt)*if)TXt

and

-

1
- det |y \* _1a\R " %HE-R,)+iPT(R-R
<RXIZt>:( K ) I
)

N
N
L
w o~ 3 (F=x) T (X—xDegin] (X%

(4)

respectively, and the elements of the (& Wg al width matrix, ~;, determine the spread
of the nuclear coherent state in phas hce@t time t.
The extent of MFF is control }\b.{ 1e elements of the 2N x 2N diagonal matrix of

Filinov parameters, \\

cq O
‘\ o q : (5)
4 0O c,
4/ V.
where the subs w represent the generalized positions and momenta of all N dofs,

ip
and O is the uhwatrix. The " diagonal element of the N x N matrices c, and ¢, regulate
moment a?d sition displacements of the ™ dof at time ¢ = 0. In the limit c,,cq — 0,

-1 ex/pression reduces to the standard DHK-IVR formulation of the real-time

ion f§1ction and in the limit c,,cq — 00, trajectory displacements are constrained

ta Ay, 30, where 0 is the null vector, resulting in a classical average,

1 A .
\ < Canlt) = 5w [ 20 (o) (al Bl (©)

the Husimi-IVR. By choosing intermediate values of the Filinov parameters for different
system modes it is possible to tune the quantumness of individual modes; an optimal choice

can significantly accelerate numerical convergence without loss of accuracy.

4
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The MMST Hamiltonian™®"" for a general F-level system is given by

1 1
H :§PTp,_1P + §pTV(R)p
1 1

+§XTV(R)X — §Tr [VR)], }\

PR

(7)

where V(R) is the F' x F' diabatic electronic potential energy ix and p is the G x G
diagonal matrix of nuclear masses. The coupling between N ions and the electronic

dofs in Eq. (7) makes it challenging to numerically time-e&%:msical equations of motion
t

g
while preserving the symplectic property of Hamiltonian systems.

Here we introduce the MInt algorithm for timé evolutienunder the MMST Hamiltonian
in Eq. (7) that exactly conserves total electrmi%ﬂob;)ility (unitarity) and symplecticity
c a

_

independently of time-step size. We prov\ ailed study of this algorithm and its

properties in Appendix B.

First we establish our notation. arhc@volution is formally®®
\:j JH
ANA T

where J is the structure matri \

O I
J= :

for an arbitra servable A,

d rdz
/ %A —<VZA) %

= V. —(V,A)TIV,H(z)
_\b ={A,H(z)}.
Ir&h}& tation, the Monodromy matrix is given by
\ N _ dz

o dZO’

such that the symplecticity criterion is®

MY "M =J1

Q o
4
and I is the iden?'{ - mateix./This is equivalent to use of the Poisson bracket, {-,H(z)}, since
J

(9)
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Publishi®@ note that this is a stronger condition than conservation of volume in phase space (Liou-
ville’s theorem) which only requires det [M| = 1.

To construct a symplectic method, we exploit the property that exact evolution under

a series of sub-Hamiltonians gives approximate evolution under the total Hamiltonian that

is exactly symplectic.®? This scheme is used to construct the corgéntional Velocity Verlet

algorithm and more complicated algorithms®! such as partitioni he pefential energy into

fast and slowly-varying components.”®? Here, we partition the Hafhiltonian in Eq. (7) into

two sub-Hamiltonians, )
—~

H = H, + H,, o (13a)

L )

H, = 5PT,u, 'P, C (13b)
Iy = Sp"V(R)p + 5x R)x: ST V(R (13¢)

—~

mply a function which takes as input phase

We then define a flow map, ®g, ¢+, correspondin exact evolution [Eq. (8)] for timestep
t under Hamiltonian H;. The flow ma&

space coordinates z, and returns, the es-e.volved values under a specified dynamics. In
this notation, exact evolution un&h\

MST Hamtiltonian is formally z; = @ (zg). We

define the MInt algorithm as oxunate flow map, ¥y s, which is a series of exact

evolutions under the su Hﬁg%ltonia s of Eq. (13b) and Eq. (13c),

t = P, a2 © Prya © Pry A2, (14)

where the ci ep ent the composition operation: fog(z) := f(g(z)). In words, Eq. (14)

describes ti %;mon of the system under H; for half a time step, under H; for a full time

step, anoﬁs gain for half a time step. As each sub-evolution is symplectic, the total

evolution will*al§o be symplectic.®® To confirm this, in Appendix E we prove symplecticity
aluatmg Eq. (12) for the MInt algorithm.

We n§te that while Liouvillians are commonly used to construct symplectic algorithms
}kﬁ @ iscuss time-evolution in general, exact evolution under a series of Liouvillians is
not necessarily symplectic, unless each Liouvillian corresponds to exact evolution under a
Hamiltonian.™® For completeness the MInt algorithm is given in the Liouvillian formalism

in Appendix D, and compared against a recently-proposed algorithm for evolution under the

MMST Hamiltonian® that is only symplectic in the limit of an infinitely small time step.
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Publishinglivolution under H, is free particle motion,

. 0H, P,
[ N 15
"T 0P (15)

for the k'™ nuclear position coordinate, with all other variables fixed. Integrating Eq. (15)

for half a time step, At/2, yields /

Ru(t/2) = u(0) + P40 Q\ (16)
For evolution under H, )\
—
x :% =V(R)p, é (17a)

pP= E— A\ )x, (17b>

1
+ ‘T{;Vi )], (17¢)

with R fixed, and we define the \Kn Vi(R) := %V(R). To solve Eq. (17) we note
that x and p are not depende \R but P is dependent on x and p. We can therefore

solve for x(t) and p(t), SﬁAt, and substitute this solution into Eq. (17c¢) to find P(At).

10,84

The motion of thefelectronic positions and momenta is therefore given by

Kt )+ ip(AD)] = e~ VR (0) 1 ip(0)]. (18)

By substit té\ (18) into Eq. (17¢) we obtain an expression for nuclear momentum
evolutlo«

F% 0 -3/ i " {[x(0) — (O] e VRV (R)e VI x(0) 4 ip(0)] — TV (R)]}
(19)
\

e above equation can be solved analytically, as discussed in Appendix B. We therefore
name the algorithm the MInt algorithm as the nuclear Momentum Integral over time in
Eq. (19) is solved exactly. In Appendix B we also show how evolution of the Monodromy

matrix under Wy A, can be computed exactly. The evolution will be exactly symplectic,

7
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Publishisegisfying Eq. (12) for any time step (although for very large time steps the evolution may
become a poor approximation to exact evolution under H).

As discussed further in Appendix C, the MInt algorithm is symmetric and time-reversible,
both properties of exact Hamiltonian evolution. Like the Velocity Verlet algorithm, it
is second order in time step At, and will therefore conserve eng/ v with fluctuations of
O(At?) without drifting. The algorithm is also explicit and, b %ﬁelec’cic, automati-

Hamiltonian,® the MInt algorithm exactly conserves G : and is therefore uni-

cally satisfies Liouville’s theorem. In addition, as noted for exact ution under the MMST
QY
—~—

tary, i.e. conserves total electronic probability,®®
F
1

n=1 n=1
for any length of time step. It is also invariant N@Z@Q&H phase (or angle) of the mapping

(% +5}>§“ﬂ<x+ ip) (21)

aI\gorithm immediately extends to Hamiltonians

where 6 is a scalar. We note t thi
containing a sum of MeyerMi@m such as the ring polymer Hamiltonians in Ref. 84.

III. MODEL SYS%
f‘46

We test MQC n yeviously—used model 2-level systems with one nuclear do
Model 1 has dia NC onic potential energy matrix elements given by

/ Vaa(R) = Vo (1 — tanh (o R)) (22b)

=
& VialR) = ae ™%, (220)

- -
Wk/(;% 0.01, a; = 1.6, a = 0.005, and b = 1.0. Model 2 is an asymmetric version of

Kﬁde\
Vi (R)

Vi1 (R) = Vo (1 + tanh (o R)) (22a)

= Vi (1 + tanh (auR)) (23a)
Voo (R) = Vo (1 — tanh (a2 R)) (23b)
Vig(R) = ae "B+, (23c)
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FIG. 1. Elements of the diabatic electroni @energy matrix for (a) model 1 and (b) model

2 are plotted as a function of the nucle ‘pcs’tio Vi1(R) (black), Vaa(R) (grey) and Via(R) (red).
B

with the same parameters asiei\%}uk Vi = 0.04, ap = 1.0, and f = 0.7. Plots of the

diabats and couplings for each Mre provided in Fig. 1.

IV. SIMULATI é;\hms
£

£

We computeégﬁ correlation function as defined in Eq. (2) for a system initially
nt s

in a nuclear ¢ohe te occupying electronic state 1. Operator A is defined as

4 A = [0y) (| = | PR;1102) (PR;1,0] (24)
~
Wher@ enotes the center of an initial nuclear coherent state. The subscripts of
) la

the electronic state while a 0 or 1 indicates a ground state or first excited

esponding initial position-space wavefunction is then given by

( 1, Y2
\st\a cor}lguration in the mapping variables corresponding to that state, respectively. The
0

1
(Reyzalis) = (1) edtm-mosinin-ny
T

X (E) xle_%(x%""x%), (25)

(NI

™
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Publishiwg 1 R; = —5.0, and the nuclear coherent state width parameter is v = v = v = 0.25.
Simulations are performed with either large incident kinetic energy, 0.1, corresponding to
initial nuclear momentum P; = 19.9, or low incident kinetic energy, 0.03, where P; = 10.9.
The nuclear mass is 1980.
To compute the particle’s distribution of final translational morggntum at long times, Py,
we define B = § (P — }5) The MQC-IVR expression for this c iesof crators is

. 1
O(Pf) = tg}l{éw/dZO dZ6<
« ei[St(z0)=St(=)]

x (z1]6(Pr — P)lz:

ribing nuclear quantum effects.6

because classical limit SC-IVRs generally f!\ho
For model 1, we sample the initia n@b@r rdinates with the following correlated

\

\ o
wN<P$§\O R) =| (PoRo| P.R)
\\ xe T AR e TR (27)

where the bars represe r;a)variables le.g. Py = 1(P}+ Py)]. The initial coordinates of
oscillator 1 are Q
]

We choose a nuclear observable for operator % t‘l-an, say, electronic state populations
L
at d

sampling distribution,

sam
<\K(pl >$10>p,10a33/10) :‘ <p10$10]11> ‘2| <p/10$/10‘11> |2

P10 A2 €T10 A2
xXe "2 Apio~ 2 Azm’ (28)

£
Where(;i st sl{bscript of the mapping variables indicates the electronic state and the

secon ‘ubscypt indicates the time. The initial coordinates of oscillator 2 are sampled from
ﬁ

) WQ(p207x207p,20’ 95/20) :| <p209020|02> |2| <p/2095/20|02> |2

_ P20 A2 _ST20 A2
\\ xe~ "2 Dby 3 Dagg (29)

For model 2, we use a different sampling scheme that proves more efficient,
_1AT
w(20,20) = [(Zolthi) (Yilzg)| €72 8700, (30)

10
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a momentum identity and using Eq. (3),

1
3 1\2 4 /2
(@](Py — P)lz) = <_> o3P

T
(PP iPe(R—
X e 3 (Pr—P) eZPf(Rt Ry) / (31)
2 .
x H e~ 1@ —wit)* =5 (05, —pjt)? o5 (1) +pje) (2] *I»
j=1

For both models we use a time step of At = 1.5 a.u a‘rb monitor energy conservation
—~

)

11— E(0)/E{l< e (32)

with a tolerance parameter, € = 10~#, such that -~

With the MInt algorithm, we find that ODK:(%-Qf trajectories violate this tolerance

in the model systems presented here and“ayithstheAime step mentioned above. We use a

total simulation time of 3000 a.u. for t%k:e&ergy simulations and 4000 a.u. for the low
ase

energy simulations. We also track th¢

N
branch of the complex square r&\Eﬁ ct quantum results are obtained by diagonalizing
) 1

the quantum mechanical Ha% the Discrete Variable Representation, followed by

time-evolution with a Chebyshev propagation algorithm.*6:87

For all results prese C(%jw, we set the position and momentum filtering parameters
for a given dof to @1\&1: = c,. Further, we take all electronic filtering parameters
reating

f the prefactor in order to select the correct

to be equal, th ‘(ﬁe two electronic states at the same level of quantization. For
clarity, in th e&)of is paper, we use cn,. and ¢q to indicate the values used to filter the
nuclear and eleetronic dofs, respectively.

The S érr ?o e package,” developed in-house and available as open-source software,

-ﬁ
was uged to perform the calculations in this study.

%%Exms

Here we show the results of using Eq. (26) to compute the particle’s distribution of final
nuclear momentum after transmission through the curve crossing in models 1 and 2. The
MQC-IVR results obtained with model 1 and a high incident energy of 0.1 are shown in
Fig. 2. Fig. 3 contains MQC-IVR results obtained with model 2 and an incident energy of

11
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Cnuc Cel Niraj max [e(Py)]

0.01 0.01 3.2 x 10 3.7 x 1072

0.05 0.05 5.8 x 108 1.1 x 1071

0.1 0.1 4.8 x 108 1.9 x 10—1/

10.0 10.0 1.5 x 106 4.1 x 1071 \
&)

0.01 0.05 7.4 x 108 5.1 ><L1 2

0.01 0.1 6.3 x 108 8. XN\
IR

0.01 10.0 2.4 x 107 M@:l\
2 )

0.05 0.01 1.5 x 10? 1.1>\1 1

0.1 0.01 8.8 x 168“ Mfl(rl
100 001 48 %@“37 x 1071

TABLE I. The number of trajectories Jrequir%e ‘r%cal convergence, Nip,j, of each MQC-IVR
result in Fig. 2. Also listed is the absolut@ive to the exact quantum result, as averaged

over Py.
\ S
0.1. Fig. 4 and Fig. 5 contai MQ\\Q\Q esults obtained with model 2 and a low incident
&a

energy of 0.03. All panels sh exact quantum result as a solid black curve.

In Fig. 2(a), Fig. 3

—~

?k)é]l(a) and Fig. 4(b), all dofs are equally quantized with ¢ =
e

Crue = Co. As expglted, uantum limit filtering strength (¢ = 0.01 shown in pink
in the first threefigures mefitioned) agrees well with the transmission peaks of the exact
quantum resu Nig t reduction in peak amplitudes and slight broadening of peak
widths. T s(Dtion peaks at Py = —6.5 and Py = —11.0 of Fig. 4(a) in this limit, though
noisier t the high-intensity transmission peaks, also agree well with the exact quantum
resultf but with.a slight over-estimation of each signal. Increasing the strength of the filter
(with, c*& 0.05 and ¢ = 1.0 shown in blue and green respectively) in each model further
b adenépeak widths and reduces peak amplitudes, but the discrete quantum peak structure

%}e’ﬁ&lned in each case and significantly fewer trajectories are required for convergence, as
réported in Tables I-III. The deviation from exact quantum increases as we further increase
filtering strength and, as expected, the MQC-IVR result collapses to the Husimi-IVR result
[shown in black, dashed in Fig. 2(a), Fig. 3(a) and Fig. 4(b)] when the filter strength is

¢ > 10 [shown in red in Fig. 2(a), Fig. 3(a) and Fig. 4(b)].

12
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0.6} (a)

I~

g

%

<

o

@,
FIG. 2. The ;3% of final nuclear momentum with model 1 and an incident energy of
0.1. The e uantum result (black, solid) is shown in each panel along with (a) the Husimi-
IVR (bla and MQC-IVR where each dof is treated with the same filtering strength:
c=0 nping = 0.05 (blue), ¢ = 0.1 (green), and ¢ = 10.0 (red); (b) the MQC-IVR results
where t uclear filtering parameters are fixed near the quantum limit, ¢y, = 0.01, and the

eleegronic)filtering parameters are varied: co = 0.05 (blue), ¢ = 0.1 (green), and ¢ = 10.0 (red);
\CDM.QC—IVR results where the electronic filtering parameters are fixed near the quantum limit,

cel'e 0.01, and the nuclear filtering parameters are varied: cpye = 0.05 (blue), cpye = 0.1 (green),

and ¢pye = 10.0 (red).

13
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0.4

@
0.3}

0.2+

C(Pp)

4

FIG. 3. The di ﬁh\of’ nal nuclear momentum with model 2 and incident energy of 0.1. The

exact quantum It (black, solid) is shown in each panel along with (a) the Husimi-IVR (black,
dashed) a@} R where each dof is treated with the same filtering strength: ¢ = 0.01 (pink),
c=0. 5-?t)lu ),

filtering ameters are fixed near the quantum limit, ¢, = 0.01, and the electronic filtering

= 0.1 (green), and ¢ = 10.0 (red); (b) the MQC-IVR results where the nuclear

pa. mete)s are varied from cq = 0.05 (blue) to co = 0.1 (green) and ¢q = 10.0 (red); (¢) MQC-
wﬁ{gsults where the electronic filtering parameters are fixed in the quantum limit, ¢q = 0.01,

and, the nuclear filtering parameters are varied from cpy. = 0.05 (blue) to cyye = 0.1 (green) and

Cnue = 10.0 (red).

14
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0.6

(@

0.4+

C(Py)

0.2+

O'OMAA ——ce

C(Pp)

.
In both panels the exact quantum %\K‘hown in black along with MQC-IVR results in which
(pi

k) and ¢ = 0.1 (blue); (b) ¢ = 1.0 (green) and ¢ = 10.0

each dof is filtered equally: (a) &‘QK
(red). )_\
We then pre?%}/ results where the nuclear and electronic dofs are quantized
nt

to different ext v varying cq and ¢y, independently. In Fig. 2(b), Fig. 3(b), and
Fig. 5(a) w &e nuclear dof in the quantum limit (¢u,c = 0.01) and vary the tuning
strength SSO;iat with the electronic dofs between c¢o = 0.05 and ¢ = 10.0. Although the

e {(eak structure is visible in all cases considered here, as we move towards the

limi§(cel = 10.0 shown in red in each case) spurious peaks appear and relative peak

ﬁ
ii@iﬁj change dramatically. We note that, unlike in Fig. 2(a), Fig. 3(a), and Fig. 4(b),
he

peaks merge to the mean-field Husimi-IVR result in the classical limit, the discrete

Gk structure is still visible when only the electronic dofs are treated in the classical limit.

Next, in Fig. 2(c), Fig. 3(c), and Fig. 5(b) we treat the electronic dofs in the quantum
limit (¢ = 0.01) and vary the extent of nuclear quantization from ¢y, = 0.01 to ¢y = 10.0.

We find these results are very similar to those in Fig. 2(a), Fig. 3(a), Fig. 4(a), and Fig. 4(b)
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0.6

0.4+

C(Py)

0.2+

0.0

C(Pp)

The exact quantum result is show blagk along with MQC-IVR results where (a) the nuclear
filtering parameters are fixed ‘!\Mu ntum limit, ¢, = 0.01, and the electronic dofs are

treated with ¢ = 1.0 (blue)-and cq =%10.0 (red); (b) the electronic filtering parameters are fixed

near the quantum limit, = 0.01, and the nuclear dofs are treated with ¢y = 1.0 (blue) and

cnue = 10.0 (red). THe Huéimi-IVR result (black, dashed) is also shown in panel (a).

where both e nih\szd nuclear dofs are equally quantized —the spurious peaks that
appear in the s where the electron dofs are treated in the classical limit do not appear,
instead the péaks start to merge with larger cpue. This gives rise to mean-field like behavior

wherd transmission probability is highest on an unphysical, average electronic surface.

g convergence of each MQC-IVR result. Also reported in each table is the maximum

\a‘b§olute error
~

As 1ti;ned above, Tables I-III report the total number of trajectories required for
e

e(Pr) = |Cnmaqe(Pr) — Com(Py)| (33)

of each result across all values of P;. This allows us to clearly identify parameter regimes

where the filtering results in improved convergence but little reduction in accuracy. For

16
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Cnuc Cel Niraj max [e(Py)]

0.01 0.01 1.6 x 10° 5.7 x 1072

0.05 0.05 4.8 x 108 1.1 x 1071

0.1 0.1 2.8 x 108 2.3 x 10—1/

10.0 10.0 3.6 x 109 3.1 x 1023\

0.01 0.05 7.2 x 108 5.5 ><L1 2

0.01 0.1 6.0 x 108 6. XN\
IR

0.01 10.0 1.2 x 108 M@:l\
2 )

005  0.01  9.4x10% 5.5 x¢1 2
Vi
0.1 0.01 7.2 % 168“ SJ~9..>4 102

10.0 0.01 4.1 &“39“0*1

TABLE II. The number of trajectories requi@ hical convergence, Ni,j, of each result in
Fig. 3. Also listed is the absolute error re th'e.tQEe exact quantum result, as averaged over Py.

the high energy simulations wit mo? T*and 2, an optimal choice of parameters may
be cpue = 0.01 and ¢ = 0.0 o&\ .1 where the number of trajectories required for
convergence is on the order of 1\Wfﬂ'bmaximum absolute error on the order of 1072. More
trajectories are required’ in this parameter regime for the low energy simulation of model
2, due to the slowe convﬁﬂbce of the reflection peaks, but the number of trajectories
required is nearly halfthat of the weakest filter (¢ =0.01), and the maximum absolute error
only increases from 0,08 to 0.15. We hypothesize that since we are calculating a nuclear
observable it is necessary to quantize the nuclear dof to a greater extent than the
electronié dofg. This idea is further validated by an observation made in the original MQC-
IVR impleme éon63 for a model 2D adiabatic system of coupled oscillators. Specifically,
it aas owr)that when observing the position of the heavy (more classical mode) it was
s 1Cien§to quantize just that mode and the accuracy of the resulting correlation function
We&? lir ly independent of the extent of quantization used to describe the lighter, unobserved

de.%3

Although Tables I-III show that the number of trajectories required to converge these low-
dimensional model systems is very large, we note that converging the correlation function

using quantum limit methods like the DHK-IVR is virtually impossible without MFF or

17
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Cnuc Cel Niraj max [e(Py)]

0.01 0.01 3.0 x 10 8.0 x 1072

0.1 0.1 1.5 x 109 3.5 x 1071

1.0 1.0 2.6 x 108 5.7 X 10—1/

10.0 10.0 2.2 x 106 7.5 % 1021 \

0.01 0.1 1.7 x 109 1.5 x 10%d
r'.

7 1 \
001 100  45x107 42 >,<®\\

0.1 0.01 2.4 x 10° M@:l\

100 001  4.5x 108 6.3 >¢1 !
7
TABLE III. The number of trajectories required for‘éraphica nvergence, Nipaj, of each result in

Fig. 4 and Fig. 5. Also listed is the absolute error r&&ive@ he exact quantum result, as averaged

over Py. ‘\\

other approximations. We also emphasizesthat as we move to higher dimensional systems,

we expect the ability to treat a lm<e umber of modes in the classical limit will make the

MQC-IVR approach invaluable. \
Mical evidence of two important features of the MInt

Finally, in Fig. 6 we provi

algorithm: symplecticity/@nd energy conservation. We also compare the performance of the
MInt algorithm to t néw plectic, fourth order, Adams-Bashforth predictor-corrector
algorithm. Sym?c 't{ is monitored by tracking the element of the matrix

3\ IM(t) = ngMpp - MEqup -1 (34)

with the4greaffest magnitude: a condition derived from Eq. (12). Our energy conservation

criterionis

o SE(t) =1— E(t)/E(0). (35)

o

the MInt algorithm, and in Fig. 6(b), we plot 0 E(¢). The time range shown along the z-axis

(a), we plot dM(t) along a single low-energy trajectory for model 2 generated using

corresponds to the time spent by the particle traversing the interaction region and each
colored curve represents a different choice of time step ranging from At = 0.05 to At = 6.0.

The largest element of §M (¢) in Fig. 6(a) remains extremely small (< 107!2), even for long

18
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FIG. 6. A ploto z rge element of IM(t) as a function of time as computed with the MInt
algorithm, ( ctlon of time as computed with the MInt algorithm, and (¢) JE(t)

as a functio e as computed with a non-symplectic Adams-Bashforth predictor-corrector

algorithm{ FEagh coley represents a different time step used: At = 0.05 (cyan), 0.10 (orange), 0.75

(red), A.59(blu ﬂ) (green), 6.0 (purple).
S ar§1 very coarse time steps, demonstrating that the MInt algorithm is symplectic.
ﬂuc uations in 0E(t) in Fig. 6(b) oscillate around the true value, and the amplitude of
oscillations decrease with time step size: both characteristics of a symplectic algorithm.
Finally, in Fig. 6(c) we plot E(t) for a trajectory with the same initial conditions generated
using the fourth order Adams-Bashforth predictor-corrector algorithm. As expected from a

non-symplectic integration scheme, the energy drifts away from the true value over time.

19


http://dx.doi.org/10.1063/1.5005557

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

PublishiWwd. CONCLUSIONS

In this article we have successfully extended MQC-IVR to the description of nuclear
coherence effects in nonadiabatic systems. We have analyzed chffects of treating both

electronic and nuclear dofs under identical and different filterin ths, and found that

there are parameter regimes in both cases which not only r Dcomputational expense

Q

but also maintain a qualitatively accurate description of the twansmigsion through a curve

crossing. We also introduced the MInt algorithm for e

m'ale tic evolution under the

MMST Hamiltonian, an important contribution to sefniclassical simulations of nonadiabatic

processes. : -

In future work we plan to extend nongﬁi'L M‘QC—IVR to multidimensional nona-
b

diabatic systems such as the NO scatte}mk m,%" as well as implement the MInt
(or similar) algorithm(s) in other nona ynamics methods that employ the MMST
Hamiltonian.

amiltonian \ ~

Q
w
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PublishiAgpendix A: MQC-IVR Prefactor
The functional form of the prefactor is given by

1 _ 1
5'71& IG)Q

1 . - .
x det | (M7, —imiMJ) (G + DMy + Mf)\

q
Mf M‘f 1 —1 Gfl Mb ))
+ ('7t qq +1 pq)(270 + CP) ( pp& )
1 . _ .
5 (WM, +iMJ )G+ T) (M, 1\;@,1&
—-—
: 1 _ : 2
+ (Mgp — Z")’tM(J;p)(g")/(] + Cq)G I%SZMZ#)Q)} )

with diagonal matrix G = (cq + Y0)c, + €4 O(’ﬂr@ We define elements of the un-

primed trajectory’s monodromy matrix as \\’5{‘\:1;; and the primed trajectory’s backward

!
oy

monodromy matrix as Mgﬂ = 25 N&fK t ackward monodromy matrix is related
t

Dt (Z07 Z6a C, Yo, ’Yt) = det(

[un

to its forward counterpart with the following identity,
Y s
Mb — -N_ pp T Vhap
RV L I
\\ M/ MY
fr __ Oa
and M, ; = a—;‘é. "\

£
Appendix B: e t/Algorithm

Here we Doe the implementation of the MInt algorithm along with exact evolution
of the Méuodfomy“matrix. To avoid computational difficulties with complex numbers the

formwl equations are rewritten such that the algorithm, when coded, is entirely real.

Q
S ‘Eyvolution of positions and momenta
In the following we assume the diabatic electronic potential energy matrix to be real-

symmetric; the extension to Hermitian V(R) is straightforward.

Evolution of nuclear position is given in Eq. (16).
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Publishin g'lo evolve the electronic positions and momenta in Eq. (18), we diagonalize the diabatic

matrix V giving eigenvectors S and a diagonal eigenvalue matrix A such that STVS = A,

where we drop the R dependence of V, S, and A for clarity. We then calculate

C =Scos(AAt)ST / (Bla)
D =Ssin(—AAt)S?T

3\ (B1D)
such that \
x(At) =Cx(0) — Dp(&Q\ (B2a)

p(At) =Cp(0) + Dx/(0). 5 (B2b)
To solve Eq. (19), we insert SST = T identiti fgd.d@e
\L..
M{% (B3)

to be the derivative of the potentialQTmﬁatic basis, giving

~

Pu(At) = Py(0) — % / dt {@)]TSGJ”MWW’MST[X(O) +ip(0)] — Tr[Vu(R)]} .

(B4)

As defined earlier wedise Vi,

£
term by term to ‘éve

4
\ At ‘ '
/ dt 6+1Atwk6_2At = Fk + ZEk (B5)
0

/&
where —\&/
A m=n
-\b (Fk)mn = 4 (Wk)mn ! (B6a)
) | s A (W), m £

S\ 0 m=n

(Ek)mn — (B6b>
o [1 = cos(\nnAY)] (W), m#n

= %V(R). We then integrate the elements of e 7AW e~ #At

\

where we use the shorthand A, = (A)mm — (A)nn. Note that T'y is real and symmetric and

=} is real and skew-symmetric since by definition A, = — .
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E;, :=ST,S", (B7a)
Fk Z:SEkST, (B7b>

where E is symmetric and F is skew-symmetric. Inserting this/ o Eq. (B4) we finally

obtain ‘)
P(At) =P,(0) — %{XT(O)EkX(O) + T( Sﬁ)

—2xT(0)Fxp(0) — Tr [V, G (B8)

Q
2. Evolution of the monodromy matrix ( o

)

From Eq. (11), the monodromy matrix i r%g"\'?ariables is given as

M R% rP MRgp

R X MXP Mxp
MPX MPP MPp
Mpx Mpp Mpp

AN
OX(t)
Q Mxy = oY (0) (B10)

for two arbitrary/phase a/e variables X and Y.

M =

where

a. FEvolution under H,

{
Sirfce evolutign under H; is linear, for evolution through At/2 the diagonal elements of
e ity)

ar
) Mpp = 20 (B11)

S 2k
.
and all other elements of M are zero. The update to the monodromy matrix is therefore®®
At
MRkX(At/Q) = Mka(O) + MPkX(O)W (B12>
kk

and all other elements are unchanged.
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We first observe that for the equations of motion in Eq. (17), Mrr = Mpp = I, and all
elements of Mgy, Mgrp and Mgy, are zero.

The monodromy matrix elements concerning only the electronic Xriables can be obtained

from Eq. (B2a) and Eq. (B2b) at no extra computational cost, \

oW
)

We can similarly use Eq. (B8) to determine gha s’ib nuclear momenta with respect to
;

initial electronic coordinates,

My, (A1) = .&+ pT(0)F,] (Bl4a)
Mp, (A —\—NO)Ek — x"(0)Fy] . (B14b)
~

Determining Mygr and Mpyr reqw ng the derivative of a matrix exponential. We use
Eq. (B2a) and Eq. (B2b) to g E\

ka At) = Cix(0) — Dyp(0) (B15a)

J

where, similar t ppe XA of Ref. 89,

8Rk
=S, cos(AAt)ST — Ssin(AAt)ALALST
Sk cos(AAt)ST]T, (B16a)
=D
b .
5 — — Sy sin(AAL)ST — Scos(AAL)ALALST
- _ [Sksin(AAN)ST]T, (B16b)
B,
0
AL =——A. B1
C=aR (B16d)

24


http://dx.doi.org/10.1063/1.5005557

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

PublishifRg a system with two electronic states Sy and Ay can be determined algebraically, and

algorithms exist for finding these exactly for an arbitrary F-level system.”

We finally require Mpgr. Differentiating Eq. (B8) gives

1
Mp g, = — 3 [XTEij + pTEjkp — QXTij;L

\ (B17)

where Q
Vi ::a%jvk, Q\ (B18a)

—S,1,S™ + ST, 8" (8, 17,8™)", (B18b)
9

1
+ 5T [V(R)) At,

ij Z:—Fk

e
OR; \>
—S,5,S! jL\SSQk — (S,E8M)T, (B18c)

B
B (W) nm m=n
L sin,, [ )mn — (W) | + 5 c0Smn AN n AW ) M #11

/ y. (B19a)

m=n
.\%1 = 08 AD] [ (Wi = 22 (Wi)un| + 5= SO A in AW i) 0 £ 71
O P
$U
3 o W aiRJ W,
=81V, S+S"V;S + (STV,S)", (B20a)
N =5 = (B = (B (B20b)
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Despite the apparent complexity of the monodromy matrix calculations, many terms can
be ‘recycled’ from previous operations, such as matrices S, C and D, etc. In addition, for a

two-level system S;E;S" is diagonal and therefore F;, = SE;,S™.

3. Complete algorithm @
The trajectory is initialized with given values of {R %\ M(0) = I. Starred
items are only required if the monodromy matrix is also&enaluated

—
For each time step: &5

P

1. Evolve nuclear positions with Eq. (16) for Az 2
! -
2. *Evolve M for At/2 using Eq. (B12 \
3. Compute V and Vi V k. Diagonali find S and A.

4. Find C and D using Eq. (K)jwaisulate x(t) and p(t) from Eq. (B2).

5. For each k, find W, an Q and By, using Eq. (B6). From these obtain E; and
Fy Vk using Eq. (B7). Theréfgre find P(¢) from Eq. (BS).

6. *Find ij, Sj, i VJ,/{

d
£

7. *Populate ,/ M, and My, from Eq. (B13) using the C and D from step 4.

?

oo

*Fro )314) find Mpyx and Mpy using {E;} and {F;} from step 5.
9. *1113 Cy jfand {Dy} from Eq. (B16) and therefore Mg and Mpr from Eq. (B15).

0, "Wind )ij} and {\;,} defined in Eq. (B20) and compute I';;, and Ej; using
Ecb (B19). From these find {E;;} and {F,;;} [Eq. (B18)] and compute Mpgr using

\ Ja (B17).

11. *Evolve the monodromy matrix using the monodromy matrix for ®, A; obtained from

steps 6 to 10.

12. Repeat steps 1 and 2* for evolution step ® g, a¢/2.
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PublishingWe note that a different flow map constructed by swapping H; and Hs in Eq. (14) would
also result in a symplectic transformation, but the flow map defined in Eq. (14) requires

fewer mathematical operations.

Appendix C: Algorithm properties /

A symmetric algorithm is formally defined as®

U_pe =Tyt )\ (C1)

To prove this, we use the property that exact evolutionfunder Hamiltonian is symmetric®

(®;! = ®_,) and therefore - 5
—1 —1 1 ;.5' -
Wl At :(I)At/2,H1 © Ho @/Mh
:(I)—At/Q, | —At,Hy © (I)—At/2,H1
Z\PH,—Q\\ (C2)
as required.

= U, (S2) (C3)

where the involution Y4is

/ y. Y= . (C4)
0 —I
Exact evolu@ider he MMST Hamiltonian is time reversible since H(R,x,P,p) =
p):

H(R,x, , This can be proven for Wy A, since exact evolution under H; and Hj is
time-reversi ay(d therefore

y.
-~ 5 BN (B2) =S[Par/o,m, © Parw, © Parjon,] ' (Xz)
b :Ecbgllt/Q,Hl © (I)Z;Hz © (1)3/2,1{1 (Xz)
(z)]
(

S . :2@3/2,}11 ° (I)Ki,Hg [Eq)At/ZHl
At/2,H, [Eq)At,Hz ° Day/om, z)|

=2 !

=®pas/2.1, © Parm, © Paryo,m, (2)

:‘IJAt(Z). (C5>
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Publishiﬁg show that the algorithm is second order, one can write out exact evolution under H in
powers of At using the Liouvillian formalism and then compare to evolution under Wy a¢,
noting that terms differ at O(At3). More elegantly, since a method constructed by Hamilto-
nian splitting is exactly symplectic and at least first order,®® and that a symmetric method

has to be of even order,*® the algorithm must be (at least) second drder accurate.

To prove that G := x'x + pTp is conserved, we note that i

g,
0 as V is symmetric. ‘)
~

i?‘)mch ged by evolution

under Hy, i.e. {G, H;} = 0 and for evolution under H, we fin =2x'"Vp—-2p'Vx =

Angle invariance is a direct consequence of unitayity<® show this explicitly one can
apply the transformation in Eq. (21) to Eq. (18) and“ghen &ansform back, observing that
evolution of the electronic positions and momenta aréunaffected. The evolution of nuclear
position in Eq. (16) is not directly dependent ongthéwelectronic variables and evolution of
nuclear momenta in Eq. (19) is invariant %@ sformation in Eq. (21).

Since the MInt algorithm is Hamilto jan ovolution discretized by a symplectic method,
there exists a modified Hamiltonian wqge nergy the algorithm conserves exponentially
well over exponentially long time fntervals.®® The modified Hamiltonian, which is timestep-
dependent, differs from the orig amiltonian by the order of the algorithm,®® so for the

MInt algorithm

/ 4 H(z) — H(z; At) = O(At?) (C6)
and the M }amiltonian H(z) will be conserved for exponentially long times with fluc-

tuations 6f O(AH?)"

-

- .-
%p&n{;lx D: Liouvillian formalism
~

he algorithm in Eq. (14) in the Liouvillian representation is equivalent to

\IJH7At — eﬁ1At/2e£2At€£1At/2 (Dl)
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£1 :{'7 Hl}
P, 0
= R D2a
— [ OB (D2a)
{-, Ha} /
1 \
== {§(X —ip)' Vi(R)(x + ‘)
k
| 9 \
— =Tr[V.(R
LT[ >]}8Pk I
,ﬁ
+p'VV, — xTvv 5 (D2b)
Note that each Liouvillian can be written as lutlon under a Hamiltonian, and
we follow the conventions of Zwanzig®? \e%!@y defining the Liouvillian without a
prefactor of i.
An alternative scheme has been su evolutlon in mapping variables which (in

this notation) is® S
N

quAt %LPAt/Q LAt ,CpAt/Q ,CelAt/Q (D3>

where £, is defined in Eq. ( DQa\N

'SIXY pTvv —x"VV, (D4a)

/ﬁ (x —ip) Vi (R)(x + ip)
T V(R 0 D4b
) r[Vi(R)] 8_Pk ( )

To com pa ese algorithms, we firstly note that the order of £, and £, in Eq. (D1) can
be swa 1thout compromising the formal properties of the algorithm. Therefore one

can deﬁl&a an alternative symplectic algorithm
S - \IIH’AL‘ — eEQAt/QeﬁlAteﬁzAt/Q’ (D5>

though this will be more computationally expensive than ¥y ;. We then note from

Eq. (D2b) and Eq. (D4) that

Lo= Lo+ Lp. (D6)
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eﬁgAt/Q ~ eL‘,elAt/QeﬁpAt/Q (D7>

to the symplectic propagator Wy n;. We therefore call Wy A ‘?’ Split Liouvillian (SL)

algorithm since it splits 242 into eLaft/2eEPA2 (and efPA2¢ &)

The approximation in Eq. (D7) is clearly exact in the At ﬁit, and therefore U H,At

will be symplectic in this limit. It will also conserve electronieiprobability exactly for any
time step like ¥ mae and Vi Ay ‘).___\
However, L, and Lp cannot in general be written sa‘(acf lution under a Hamiltonian

[cf. Eq. (D2)] and we show in appendix E that th S.L

for an arbitrary timestep.
\ j»

Appendix E: Symplecticity prope‘le\ggl\he MInt and SL algorithms

Here we confirm that the MI meis symplectic by explicitly evaluating Eq. (12)
M ow that the SL algorithm in Eq. (D3) is not, in

m is not in general symplectic

for each step of the algorith
general, symplectic. For notati pllClty we present the results for one nuclear dof;

further nuclear dof mer

y‘adcsnnore indices
We first note that gvolutien under an arbitrary series of symplectic steps is also symplectic,
£

since the monodrém atljfk of the overall algorithm is the product of the monodromy

matrices of t

=

idual” steps, and symplecticity can therefore be proven by applying

Eq. (12) regursively. To prove that the MInt algorithm is symplectic it is therefore sufficient
to prove y.
~
) Mp I "My, =37 (E1)
ﬁ
arg\3
\ S
M}, J "My, =J (E2)

where My, and My, are the monodromy matrices associated with evolution under H; and

H, respectively.
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Publishihg Evolution under H,

The monodromy matrix (for evolution with timestep At/2) is simply

1 0T At/2m 0T

M 01 0 @) /
Hy — .
' 00T 1 oF \

0O 0

Simple matrix multiplication shows that this satisfies E

2. Evolution under H,

We firstly define

£
where the prime?den € de)dvatives w.r.t. the nuclear coordinate, such that

-)\ 10T 0 0T

g C0-D
b e 1 a

Q/ Do
5 0

~Cf+ef+Dg -CD+DC 0 -CC-DD
1 0 0 0
Df+aT+Cg¢ +DD+CC 0 +DC-CD

M}, J "My, =

31

0 —e—g'D+f'C -1 —a—g'C—f'D

(E5)

(E6)
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Publishii& firstly note that CD — DC = O since these matrices have the same eigenvectors and
CC + DD =1. We then define

h:=—Cf +e' +Dg (E7a)
j:=Df +a' + Cg, / (E7b)
such that Eq. (E6) reduces to -)\
0 —hT —1 —j
h O 0
Mp,J "My, = (E8)
1 0
j I

To evaluate Eq. (E7) we define the matrices ( ,-)
f -

A:=DC' \mi (E9a)
D'}A)\\’ (E9b)
such that \
\\K x + Bp (E10a)
N

=—Bx+ Ap. (E10b)

In order to prove Eq. ( Q)T\wfjmust prove h = 0 and j = 0 V x, p, which requires proving

A =0 and B = O/ As we Il see, it is mathematically convenient to prove this in the

Y.
adiabatic basis zé —/D and STBS = O.
We find
4 STAS =A’t — sin(AAt)STS’ cos(AAL)
N V. + cos(AAL)STS' sin(AAL) — T (E11)
h-th
5 (STAS) i = AL, SumAt + (STS)n sin( A AL) — T (E12)

NP

evaluate the W matrix in I', we find from Eq. (B3)

0
W —ST
=3 <3R

=STS'A + A’ + AS''S. (E13)

SAST) S
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Publishiﬁ\g also use the property that the nonadiabatic derivative coupling matrix STS’ is antisym-
metric, i.e. because STS =1, S'S 4 STS’ = O, and therefore

Wom =(STS ) mmAmn + AL . (E14)

Inserting this into Eq. (B6) we obtain

" 3\
L= (E15a)
—(STS )nm sin(ApmAt) n ¢N
_ ?"-‘m
Spm = TN
[cos()\nmAt 1] (S ’)nm L A m

-.

Inserting Eq. (E15a) into Eq. (E12) shows that TAS .-_)@ and therefore A = Q.
To prove that B = O, we find

-
(STBS),, (sTs®*nmAt . (E16)

since STS is skew-symmetric (see ab %he\n he diagonal elements of this will vanish, and

the off-diagonal elements also va by'Eq. (E15b), such that B = 0. Consequently h = 0

(E15b)

by Eq. (E10a) and j = 0 by 10b), proving that evolution under H, is symplectic.
Combining this with sec 1on E1l ves that Wy A, (the MInt algorithm) and U HAt are

symplectic for any ti ep, ¢ nﬁrmmg our earlier statement of symplecticity which was

based upon contru ing A me od by Hamiltonian splitting.®

3. TheS rlth
As no , the only difference between Wy o, (which we have just proven to be
symp ctlc he SL algorithm ¥ m,At 1s the approximation in Eq. (D7). We therefore seck

1‘& Whether successive evolution under L) then Lp is symplectic. The monodromy
i

matrix a 001a,ted with nuclear momentum evolution (for timestep At) is

NI

1 0T 0 0r
0 1 0 0
Mp = | . (E17)
b —q*V'At 1 —pTV'At
0 0 0 1
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Publishimg! the matrix associated with electronic evolution only is

1 07 0 of
C 0 -D
M, = | (E18)
00T 1 o7
f D0 C /\
where f and g are defined in Eq. (E4) and 3
~ 1
bi=—3 (x'V'x+p'V'p - Fss”] : (E19)

—
We firstly note that det [Mp| = 1 and det |[M| =f, Whichuneans that the SL algorithm

will satisfy Liouville’s theorem, a necessary but not s Cierb criterion for symplecticity.
However, ( ')

;
0 % t —1 pTV'At
S - ’>ﬁs\ 0 I
MpJ "Mp = \0 (EQO)
T 0 OT
VpALL T 0 O

so evolution under Lp is not @\ nless V' = 0 (the diabatic matrix has no nuclear

dependence). Furthermore,

—g™D+fI'C -1 —g'C - D

/ éf + Dg 0 0 —I
) 1 0 0 0

Df + Cg I 0 0

- / 0 e —1 a
b e 0 0 —I
-~ = (E21)
5 1 00 O
S —aTT 0 o
~

cre we have exploited Eq. (E7) and the earlier proofs that h = 0 and j = 0. In general
a # 0 and e # 0, so evolution under L, is not symplectic.
We also consider combined evolution of both Lp and L. in order to compare the SL

and MInt algorithms on an equal footing and show that the combination of steps does not
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Publishihag(. to cancellation of errors which restores symplecticity. We consider evolution under Lp

followed by Le (the fourth and fifth steps of the SL algorithm), since evolution under Lp

first does not change the electronic dofs subsequently used in M and therefore leads to

1 0

M, Mp — | & (E22)
b —xTV/At 1 —
f — Q

simpler algebra. We find

comparison with Eq. (E5) leads us to define —
3= pTV’At 5 (E23a)
(E23b)

such that

(E24)

Comparison with section E 2 m\hat MEiMIT M, Mp = J! if and only if 3 = a and

€ = e, since the b term ;s out. Expanding these conditions in coefficients of x and p
leads to the conditio s

E V' At, (E25a)

F 0. (E25b)

Evaluati t}yse the adiabatic basis (as above) gives
= / ST(E - V'At)S =I' - WA, (E26a)
3 STFS =E, (E26b)

ﬁ
an evalbating these elementwise in powers of At gives

S\ 0 n=m

(T — WAy = 2 , (E27a)
— 22 AW, + O(AE) n#m

0 n=m
Eom = ) (E27b)
22 AL2W, + O(ALY) n#m
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Publishi}is means that (€ —e) and (3 —a) will be O(At*). The SL algorithm will therefore be
symplectic in the At — 0 limit (as noted above) but for an arbitrary timestep will not be
symplectic. Consequently the energy is likely to drift, though the extent of the drift may be
small if the adiabatic states are closely separated and there is little off-diagonal coupling in
the adiabatic basis (i.e. M Wam At? < 1). We also observe that t?!combination M Mp is
symplectic to one higher order in time to M or Mp which fr q. 0) and Eq. (E21)

will be symplectic to O(At). \

—~
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