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of the exact quantum rate in the absence of recrossing
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In Paper I [T. J. H. Hele and S. C. Althorpe, J. Chem. Phys. 138, 084108 (2013)] we derived a
quantum transition-state theory (TST) by taking the t → 0+ limit of a new form of quantum flux-side
time-correlation function containing a ring-polymer dividing surface. This t → 0+ limit appears to
be unique in giving positive-definite Boltzmann statistics, and is identical to ring-polymer molecular
dynamics (RPMD) TST. Here, we show that quantum TST (i.e., RPMD-TST) is exact if there is
no recrossing (by the real-time quantum dynamics) of the ring-polymer dividing surface, nor of any
surface orthogonal to it in the space describing fluctuations in the polymer-bead positions along the
reaction coordinate. In practice, this means that RPMD-TST gives a good approximation to the exact
quantum rate for direct reactions, provided the temperature is not too far below the cross-over to
deep tunnelling. We derive these results by comparing the t → ∞ limit of the ring-polymer flux-
side time-correlation function with that of a hybrid flux-side time-correlation function (containing
a ring-polymer flux operator and a Miller-Schwarz-Tromp side function), and by representing the
resulting ring-polymer momentum integrals as hypercubes. Together with Paper I, the results of this
article validate a large number of RPMD calculations of reaction rates. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4819076]

I. INTRODUCTION

In Paper I,1 we derived a quantum generalization of clas-
sical transition-state theory (TST), which corresponds to the
t → 0+ limit of a new form of quantum flux-side time-
correlation function. This function uses a ring-polymer2 di-
viding surface, which is invariant under cyclic permutation of
the polymer beads, and thus becomes invariant to imaginary-
time translation in the infinite-bead limit. The resulting quan-
tum TST appears to be unique, in the sense that the t → 0+
limit of any other known form of flux-side time-correlation
function1, 3–5 gives either incorrect quantum statistics, or zero.
Remarkably, this quantum TST is identical to ring-polymer
molecular dynamics (RPMD) TST,6 and thus validates a
large number of recent RPMD rate calculations,7–19 as well
as the earlier-developed “quantum TST method”20–25 (which
is RPMD-TST in the special case of a centroid dividing
surface,6 and which, to avoid confusion, we will refer to here
as “centroid-TST”26).

There are a variety of other methods for estimating the
quantum rate based on short-time5, 27–31 or semiclassical32–42

dynamics. What is different about quantum TST is that it cor-
responds to the instantaneous t → 0+ quantum flux through
a dividing surface. Classical TST corresponds to the analo-
gous t → 0+ classical flux, which is well known to give the
exact (classical) rate if there is no recrossing of the dividing
surface;43, 44 in practice, there is always some such recross-
ing, and thus classical TST gives a good approximation to the
exact (classical) rate for systems in which the amount of re-
crossing is small, namely direct reactions. The purpose of this

a)Author to whom correspondence should be addressed. Electronic mail:
sca10@cam.ac.uk

article is to derive the analogous result for quantum TST (i.e.,
RPMD-TST), to show that it gives the exact quantum rate if
there is no recrossing (by the exact quantum dynamics45), and
thus that it gives a good approximation to the exact quantum
rate for direct reactions.

To clarify the work ahead, we summarize two important
differences between classical and quantum TST. First, classi-
cal TST gives a strict upper bound to the corresponding exact
rate, but quantum TST does not, since real-time coherences
may increase the quantum flux upon recrossing.1 Quantum
TST breaks down if such coherences are large; one then has
no choice but to attempt to model the real-time quantum dy-
namics. However, in many systems (especially in the con-
densed phase), real-time quantum coherence has a negligi-
ble effect on the rate. In such systems, quantum TST gives
a good approximation to an upper bound to the exact quan-
tum rate. This becomes a strict upper bound only in the high-
temperature limit, where classical TST is recovered as a spe-
cial limiting case.

Second, when discussing recrossing in classical TST,
one has only to consider whether trajectories initiated on
the dividing surface recross that surface. In quantum TST,
the time-evolution operator is applied to a series of N initial
positions, corresponding to the positions of the polymer
beads. A consequence of this, as we discuss below, is that
one needs to consider, not just recrossing (by the exact
quantum dynamics) of the ring-polymer dividing surface, but
also of surfaces orthogonal to it in the (N − 1)-dimensional
space describing fluctuations in the polymer-bead positions
along the reaction coordinate. A major task of this article
will be to show that the recrossing of these surfaces (by
the exact quantum dynamics) causes the long-time limit
of the ring-polymer flux-side time-correlation function to

0021-9606/2013/139(8)/084115/13/$30.00 © 2013 AIP Publishing LLC139, 084115-1
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differ from the exact quantum rate. It then follows that the
RPMD-TST rate is equal to the exact quantum rate if there is
neither recrossing of the ring-polymer dividing surface, nor
of any of these N − 1 orthogonal surfaces.

We will use quantum scattering theory to derive these
results, although we emphasise that they apply also in
condensed phases (where RPMD has proved particularly
groundbreaking9, 13–17). The scattering theory is employed
merely as a derivational tool, exploiting the property that
the flux-side plateau in a scattering system extends to in-
finite time, which makes derivation of the rate straightfor-
ward. The results thus derived can be applied in the condensed
phase, subject to the usual caveat of there being a separation
in timescales between barrier-crossing and equilibration.46, 47

We have relegated most of the scattering theory to
Appendices A–D, in the hope that the outline of the deriva-
tion can be followed in the main body of the text.

The article is structured as follows: After summarizing
the main findings of Paper I1 in Sec. II, we introduce in
Sec. III a hybrid flux-side time-correlation function, which
correlates flux through the ring-polymer dividing surface with
the Miller-Schwarz-Tromp3 side function, and which gives
the exact quantum rate in the limit t → ∞. We describe the N-
dimensional integral over momenta obtained in this limit by
an N-dimensional hypercube, and note that the t → ∞ lim-
its of the ring-polymer and hybrid flux-side time-correlation
functions cut out different volumes from the hypercube, thus
explaining why the former does not in general give the exact
quantum rate. In Sec. IV we show that the only parts of the
integrand that cause this difference are a series of Dirac δ-
function spikes running through the hypercube. In Sec. V we
show that these spikes disappear if there is no recrossing (by
the exact quantum dynamics45) in the (N − 1)-dimensional
space orthogonal to the dividing surface (mentioned above). It
then follows that the RPMD-TST rate is equal to the exact rate
if there is also no recrossing of the dividing surface itself. In
Sec. VI we explain how these results (which were derived in
one dimension) generalize to multi-dimensions. Section VII
concludes the article.

II. SUMMARY OF PAPER I

Here we summarize the main results of Paper I.1 To
simplify the algebra, we focus on a one-dimensional scat-
tering system with hamiltonian Ĥ , potential V (x), and mass
m. However, the results generalize immediately to multi-
dimensional systems (see Sec. VI) and to the condensed phase
(see comments in the Introduction).

The ring-polymer flux-side time-correlation function, in-
troduced in Paper I,1 is

C
[N]
fs (t) =

∫
dq

∫
dz

∫
d�F̂[f (q)]h[f (z)]

×
N∏

i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× 〈qi + �i/2|eiĤ t/¯|zi〉〈zi |e−iĤ t/¯|qi − �i/2〉,
(1)

where N is the number of polymer beads, βN = β/N, with β

= 1/kBT, and q ≡ {q1, . . . , qN}, with z and � similarly de-
fined. The function f(q) is the ring-polymer dividing surface,
which is invariant under cyclic permutations of the polymer
beads (i.e., of the individual qi), and thus becomes invariant
to imaginary-time translation in the limit N → ∞. The oper-
ator F̂[f (q)] gives the flux perpendicular to f(q), and is given
by

F̂[f (q)] = 1

2m

N∑
i=1

{
p̂i

∂f (q)

∂qi

δ[f (q)] + δ[f (q)]
∂f (q)

∂qi

p̂i

}
.

(2)

Note that we employ here a convention introduced in
Paper I,1 that the first term inside the curly brackets is in-
serted between e−βN Ĥ |qi + �i/2〉 and 〈qi + �i/2|eiĤ t/¯ in
Eq. (1), and the second term between e−iĤ t/¯|qi + �i/2〉 and
〈qi + �i/2|e−βN Ĥ . This is done to emphasise the form of
C

[N]
fs (t) [Eq. (1) is written out in full in Paper I1].

We can regard C
[N]
fs (t) as a generalized Kubo-

transformed time-correlation function, since it correlates
an operator (in this case F̂[f (q)]) on the (imaginary-time)
Feynman paths at t = 0 with another operator (in this case
h[f(z)]) at some later time t, and would reduce to a standard
Kubo-transformed function if these operators were replaced
by linear functions of position or momentum operators.
The advantage of C

[N]
fs (t) is that it allows both the flux and

the side dividing surface to be made the same function of
ring-polymer space (i.e., f), which is what makes C

[N]
fs (t)

non-zero in the limit t → ∞. One can show1 that the
invariance of f(q) to imaginary time-translation in the limit
N → ∞ ensures that C

[N]
fs (t) is positive-definite in the limits

t → 0+ and N → ∞. This allows us to define the quantum
TST rate

k
‡
Q(β)Qr(β) = lim

t→0+
lim

N→∞
C

[N]
fs (t), (3)

where

k
‡
Q(β)Qr(β)

= lim
N→∞

1

(2π¯)N

∫
dq

∫
dP0δ[f (q)]

√
BN (q)

P0

m
h(P0)

×
√

2πβN¯2

m
e−P 2

0 βN /2m

N∏
i=1

〈qi−1|e−βN Ĥ |qi〉. (4)

Comparison with Refs. 6–8 shows that k
‡
Q(β) is identical

to the RPMD-TST rate. The terms “quantum TST” and
“RPMD-TST” are therefore equivalent (and will be used
interchangeably throughout the article).

For quantum TST to be applicable, one must be able to
assume that real-time coherences have only a small effect on
the rate. It then follows that (a good approximation to) the op-
timal dividing surface f(q) is the one that maximises the free
energy of the ring-polymer ensemble. If the reaction barrier
is reasonably symmetric,48 or if it is asymmetric but the tem-
perature is too hot for deep tunnelling, then a good choice of
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dividing surface is

f (q) = q0 − q‡, (5)

where

q0 = 1

N

N∑
i=1

qi (6)

is the centroid. (This special case of RPMD-TST was intro-
duced earlier20–24 and referred to as “quantum TST”; to avoid
confusion we refer to it here as “centroid-TST.”26) If the bar-
rier is asymmetric, and the temperature is below the cross-
over to deep tunnelling, then a more complicated dividing sur-
face should be used which allows the polymer to stretch.6 As
mentioned above, f(q) must be invariant under cyclic permu-
tation of the beads so that it becomes invariant to imaginary
time-translation in the limit N → ∞, and thus gives positive-
definite quantum statistics.

It is assumed above, and was stated without proof in Pa-
per I,1 that the RPMD-TST rate gives the exact quantum rate
in the absence of recrossing, and is thus a good approxima-
tion to the exact rate if the amount of recrossing is small. The
remainder of this article is devoted to deriving this result.

III. LONG-TIME LIMITS

A. Hybrid flux-side time-correlation function

To analyze the t → ∞ limit of C
[N]
fs (t), we will find it

convenient to consider the t → ∞ limit of the closely related
hybrid flux-side time-correlation function:

C
[N]
fs (t) =

∫
dq

∫
dz

∫
d�F̂[f (q)]h(z1 − q‡)

×
N∏

i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× 〈qi + �i/2|eiĤ t/¯|zi〉〈zi |e−iĤ t/¯|qi − �i/2〉.
(7)

Note that we could equivalently have inserted any one
of the other zi into the side-function, and also that we
could simplify this expression by collapsing the identities∫
dzie

iĤ t/¯|zi〉〈zi |e−iĤ t/¯, i �= 1 [but we have not done so in
order to emphasise the relation with C

[N]
fs (t)].

The function C
[N]
fs (t) does not give a quantum TST, ex-

cept in the special case that N = 1 and f(q) = q1. In this case,

C
[N]
fs (t) is identical to C

[1]
fs (t), whose t → 0+ limit was shown

in Paper I1 to be identical to the quantum TST introduced
on heuristic grounds by Wigner in 1932.49 For N > 1, the

flux and side dividing surfaces in C
[N]
fs (t) are different func-

tions of ring-polymer space, with the result that C
[N]
fs (t) tends

smoothly to zero in the limit t → 0+.1

By taking the t → ∞ limit of the equivalent side-flux

time-correlation function C
[N]
sf (t), we show in Appendix A

that

kQ(β)Qr(β) = lim
t→∞ C

[N]
fs (t), (8)

where kQ(β) is the exact quantum rate, and this expression
holds for all N ≥ 1. For N = 1, we have thus proved that
the flux-side time-correlation function that gives the Wigner
form of quantum TST (see above) also gives the exact rate
in the limit t → ∞.50 For N > 1, which is our main con-
cern here, C

[N]
fs (t) has the same limits as the Miller-Schwarz-

Tromp3 flux-side time-correlation function, tending smoothly
to zero as t → 0+, and giving the exact quantum rate as

t → ∞. We can also evaluate the t → ∞ limit of C
[N]
fs (t)

directly [i.e., not via C
[N]
sf (t)]. We apply first the relation

lim
t→∞

∫ ∞

−∞
dz〈x|eiK̂t/¯|z〉h(z − q‡)〈z|e−iK̂t/¯|y〉

=
∫ ∞

−∞
dp〈x|p〉h(p)〈p|y〉, (9)

where K̂ is the kinetic energy operator and 〈 x|p 〉
=(2π¯)−1/2exp (ipx); this converts Eq. (7) into a form that in-
volves applications of the Møller operator51

�̂− ≡ lim
t→∞ eiĤ t/¯e−iK̂t/¯ (10)

onto momentum states | pi 〉. We then use the relation

�̂−|p〉 = |φ−
p 〉, (11)

where |φ−
p 〉 is the (reactive) scattering wave function with out-

going boundary conditions,52 to obtain

lim
t→∞ C

[N]
fs (t) =

∫
dpAN (p)h(p1), (12)

with

AN (p) =
∫

dq
∫

d�F̂[f (q)]

×
N∏

i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× 〈qi + �i/2|φ−
pi

〉〈φ−
pi

|qi − �i/2〉. (13)

B. Representation of the ring-polymer
momentum integral

To analyze the properties of Eq. (12) (and of Eq. (17)
given below), we will find it helpful to represent the space
occupied by the integrand as an N-dimensional hypercube,53

whose edges are the axes −pmax < pi < pmax, i = 1. . . N, in
the limit pmax → ∞. We assume no familiarity with the ge-
ometry of hypercubes, and in fact use this terminology mainly
to indicate that once a property of AN(p) has been derived for
N = 3 (where the hypercube is simply a cube and thus eas-
ily visualised as in Fig. 1) it generalizes straightforwardly to
higher N.

The only formal properties of hypercubes that we need
are, first that a hypercube has 2N vertices, second that one can
represent the hypercube by constructing a graph showing the
connections between its vertices, and third that the graph for a
hypercube of dimension N can be made by connecting equiv-
alent vertices on the graphs of two hypercubes of dimension
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FIG. 1. Representation of the momentum integrals in Eqs. (12) and (17) for
N = 3. The axes (a) are positioned such that the origin is at the centre of
each of the cubes, which are cut by (b) the centroid dividing surface h(p0)
(blue), and (c) the dividing surface h(p1) (blue). The red arrow represents
the centroid axis. This picture can be generalized to N > 3, by replacing the
cubes with N-dimensional hypercubes.

N − 1. Figure 2 illustrates this last point, showing how the
graph for a cube (N = 3) can be made by connecting equiva-
lent vertices on the graphs for two squares (N = 2). Figure 2
also introduces the (self-evident) notation that we will use
to label vertices; e.g., (− 1, 1, 1) refers to the vertex on an
N = 3 hypercube (i.e., a cube) located at p1 = −pmax, p2 = p3

= pmax.
These properties allow one to build up a hypercube by

adding together its subcubes in a recursive sequence. By sub-
cube we mean that each pi is confined to either the posi-
tive or negative axis; there are therefore 2N subcubes, each
corresponding to a different vertex of the hypercube (so we
can label the subcubes using the vertex notation introduced
above). Figure 3 shows how one can build up an N = 3 hy-
percube (i.e., a cube) by adding its subcubes together recur-
sively, joining first two individual subcubes along a line, then
joining two lines of subcubes in the form of a square, and fi-
nally joining two squares of subcubes to give the entire cube.
The analogous sequence can be used to build up a hypercube
of any dimension N from its subcubes, and will be useful
in Sec. IV B.

We now define the energies

Ei ≡ E−(pi) = p2
i

2m
+ Vprod pi > 0

= p2
i

2m
+ Vreac pi < 0, (14)

FIG. 2. Diagram showing how a cube can be built up by connecting
the equivalent vertices on two squares. One can similarly build up an
N-dimensional hypercube by connecting the equivalent vertices on two
(N − 1)-dimensional hypercubes. This figure also illustrates the notation used
in the text to label the vertices of a hypercube.

FIG. 3. Diagram showing how a cube can be built up recursively in three
steps from its eight subcubes. One can similarly build up an N-dimensional
hypercube in N steps from its 2N subcubes.

and introduce the notation p̃i , such that

p̃i = −
√

p2
i + 2m(Vprod − Vreac) pi > 0,

(15)

p̃i = +
√

p2
i + 2m(Vreac − Vprod) pi < 0,

where Vreac and Vprod are the asymptotes of the potential V (x)
in the reactant (x → −∞) and product (x → ∞) regions; i.e.,
the tilde has the effect of converting a product momentum
to the reactant momentum corresponding to the same energy
Ei, and vice versa. Note that we will not need to interconvert
between the reactant and product momenta if one or other of
them is imaginary, and hence the square roots in Eq. (15) are
always real.

For a symmetric barrier, it is clear that p̃i = −pi , and
from this it is easy to show that

AN (̃p) = −AN (p) for symmetric barriers, (16)

where p̃ ≡ (p̃1, p̃2, . . . , p̃N ); i.e., AN(p) is antisymmetric
with respect to inversion through the origin. Clearly this anti-
symmetry ensures that the integration of AN (̃p) over the en-
tire hypercube (i.e., with the side function omitted) gives zero.
This integral is also zero for an asymmetric barrier, but there
is then no simple cancellation of AN(p) with AN (̃p).

Finally, we note that AN(p) is symmetric with respect to
cyclic permutations of the pi, and thus has an N-fold axis
of rotational symmetry around the diagonal of the hyper-
cube on which all pi are equal. We will refer to this diag-
onal as the “centroid axis,” since displacement along this
axis measures the displacement of the momentum centroid
p0 = ∑N

i=1 pi/N .
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C. Ring-polymer flux-side time-correlation function

It is straightforward to modify the above derivation to
obtain the t → ∞ limit of the ring-polymer flux-side time-
correlation function C

[N]
fs (t). The only change necessary is to

replace the side function h(z1) by h[f(z)], which gives

lim
t→∞ C

[N]
fs (t) =

∫
dpAN (p)h[f (p)], (17)

where AN(p) is defined in Eq. (13), and f (p) is defined by

lim
t→∞ h[f (pt/m)] = h[f (p)], (18)

i.e., f (p) is the limit of f (p) at very large distances. In the
special case that f (q) = q0, we obtain f (p) = p0 = f (p);
but in general f (p) �= f (p). A time-independent limit of
Eq. (18) is guaranteed to exist, since otherwise f(q) would not
satisfy the requirements of a dividing surface.

Whatever the choice of f(q), it is clear that the (permu-
tationally invariant) h[f (p)] encloses a different part of the
hypercube than does h(p1). For example, if f (q) = q0 and
N = 3, then h[f (p)] = h(p0) cuts out the half of the cube
on the positive side of the hexagonal cross-section shown in
Fig. 1(b), whereas h(p1) cuts off the top half of the cube on
the p1 axis [Fig. 1(c)]. Thus we cannot in general expect the

t → ∞ limits of C
[N]
fs (t) and C

[N]
fs (t) to be the same, unless

AN(p) satisfies some special properties in addition to those
just mentioned. We will show in Secs. IV and V that AN(p)
does satisfy such properties if there is no recrossing of any
surface orthogonal to f(q) in ring-polymer space.

IV. RING-POLYMER MOMENTUM INTEGRALS

A. Structure of AN(p)

One can show using scattering theory (see Appendix B)
that AN(p) consists of the terms

AN (p) = aN (p)

[
N−1∏
i=1

δ(Ei+1 − Ei)

]
+ rN (p), (19)

where aN(p) is some function of p, and rN(p) satisfies

rN (p1, . . . , p̃j , . . . , pN ) = −
∣∣∣∣ p̃j

pj

∣∣∣∣ rN (p1, . . . , pj , . . . , pN )

(20)

(where the dots indicate that all the pi except pj take the same
values on both sides of the equation). Equation (20) is equiv-
alent to stating that rN(p) alternates in sign between adja-
cent subcubes (i.e., subcubes that differ in respect of just one
axis), or that rN(p) takes opposite signs in even and odd sub-
cubes (where a subcube is defined to be even/odd if it has
an even/odd number of axes for which pi < 0). Note that
rN(p) = 0 if any p̃i , i = 1. . . N, is imaginary (see
Appendix B).

The first term in Eq. (19) describes a set of 2N δ-function
spikes running along all the lines in the hypercube for which
the energies Ei, i = 1. . . N, are equal. There is one such line in
every subcube. Two of these lines point in positive and neg-
ative directions along the centroid axis (i.e., the diagonal of
the hypercube). The other 2N − 2 off-diagonal spikes radiate

FIG. 4. Plot of the off-diagonal spikes in AN(p) for N = 3, obtained by look-
ing down the centroid axis [the red arrow in Fig. 1(b)].

out from this axis. If the barrier is symmetric, then each off-
diagonal spike is a straight line joining the centre of the hy-
percube to one of its vertices. If the barrier is asymmetric, the
off-diagonal spikes are hyperbolae [on account of Eq. (15)].
The off-diagonal spikes are distributed with N-fold rotational
symmetry about the centroid axis because of the invariance of
AN(p) under cyclic permutations; e.g., for N = 3, the spikes
(− 1, 1, 1), (1, −1, 1), (1, 1, −1) (where this notation identi-
fies each spike by the subcube that it runs through) rotate into
one another under cyclic permutation of the beads; see Fig. 4.

B. Cancellation of the term rN(p)

We now show that rN(p) in Eq. (19) contributes zero to

C
[N]
fs (t) and C

[N]
fs (t) in the limits t, N → ∞, and may therefore

be ignored when discussing whether C
[N]
fs (t) gives the exact

quantum rate in these limits. This property is easy to show for
a symmetric barrier, for which Eqs. (16) and (20) imply that
rN(p) is zero for all even N, and thus that the contribution to
the integral from rN(p) tends to zero in the limit N → ∞. For
an asymmetric barrier, rN(p) is in general non-zero. However,
we now show that the alternation in sign between adjacent

subcubes [Eq. (20)] causes rN(p) to cancel out in both C
[N]
fs (t)

and C
[N]
fs (t) in the limits t, N → ∞.

This cancellation is easy to demonstrate for C
[N]
fs (t): One

simply notes that the side-function h(p1) encloses an even
number of subcubes, which can be added together in adjacent
pairs. For example, if we add together the adjacent subcubes
(1, . . . , 1, 1) and (1, . . . , 1, −1) (where the dots indicate that
the intervening values of 1 and −1 are the same for the two
subcubes), we obtain∫ ∞

0
dp1 . . .

∫ ∞

0
dpN−1

∫ ∞

0
dpNrN (p)h(p1)

+
∫ ∞

0
dp1 . . .

∫ ∞

0
dpN−1

∫ 0

−∞
dpNrN (p)h(p1) (21)
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(where the dots indicate that the integration ranges for pi, i
= 2. . . N − 2 are the same in both terms). We can change
the limits on the last integrand to 0 → ∞ by transforming
the integration variable from pN to p̃N , and using the relation
pidpi = p̃idp̃i [see Eq. (15)]. Equation (20) then ensures that
the two terms in Eq. (21) cancel out. Hence the contribution

from rN(p) cancels out in the t → ∞ limit of C
[N]
fs (t) (for any

N > 0).
Using similar reasoning, we can show that the contribu-

tion from rN(p) to C
[N]
fs (t) cancels out in the limits t, N → ∞.

For finite N, this cancellation is in general54 only partial, be-
cause the function h[f (p)] encloses different volumes in any
two adjacent subcubes. However, one can show that the total
mismatch in the volumes enclosed in the even subcubes and
the odd subcubes tends rapidly to zero as N → ∞. The trick is
to build up the hypercube recursively, by extending to higher
N the sequence shown in Fig. 3 for N = 3. The jth step in this
sequence can be written as

S(N ) =
∫ ∞

−∞
dp1 . . .

∫ ∞

−∞
dpj

∫ ∞

0
dpj+1

. . .

∫ ∞

0
dpNrN (p)h[f (p)]

=
∫ ∞

−∞
dp1 . . .

∫ ∞

−∞
dpj−1

∫ ∞

0
dpj

. . .

∫ ∞

0
dpNrN (p)h[f (p)]

+
∫ ∞

−∞
dp1 . . .

∫ ∞

−∞
dpj−1

∫ 0

−∞
dpj

∫ ∞

0
dpj+1

. . .

∫ ∞

0
dpNrN (p)h[f (p)] (22)

(where the first set of dots in each term indicates that the inter-
vening integration ranges are −∞ < pi < ∞, and the second
set that they are 0 < pi < ∞). Because each subcube in the
second term is adjacent to its counterpart in the third term,
there is an almost complete cancellation in the rN(p) terms.
All that is left is the residue,

S(N ) =
∫ ∞

−∞
dp1 . . .

∫ ∞

−∞
dpj−1

∫ ∞

0
dpj . . .

∫ ∞

0
dpNrN (p)

× {h[f (p1, . . . , pj , . . . , pN )]

− h[f (p1, . . . , p̃j , . . . , pN )]}, (23)

which occupies the volume sandwiched between the two
heaviside functions. Appendix C shows that this volume is
a thin strip on the order of N times smaller than the volume
occupied by rN(p) in each of the two terms that were added
together in Eq. (22). Now, each of these terms was itself the
result of a similar addition in the (j − 1)th step, which also re-
duced the volume occupied by rN(p) by a factor on the order
of N, and so on. As a result, the volume occupied by rN(p) af-
ter the Nth (i.e., final) step is on the order of NN times smaller
than the volume of a single subcube. The mismatch in volume
between the even and odd subcubes thus tends rapidly to zero

in the limit N → ∞, with the result that rN(p) cancels out
completely55 in C

[N]
fs (t) in the limits t, N → ∞.

C. Comparison of δ-function spikes

We have just shown that only the first term in Eq. (19)

contributes to C
[N]
fs (t) and C

[N]
fs (t) in the limits t, N → ∞. Any

difference between these quantities can thus be accounted for
by comparing which spikes are enclosed by the side functions
h(p1) and h[f (p)]. It is clear that both h(p1) and h(p0) enclose
the spike that runs along the centroid axis in a positive direc-
tion, and exclude the spike that runs in a negative direction.
A little thought shows that this property must hold for any
choice of h[f (p)] (since the positive spike corresponds to all
momenta pi travelling in the product direction as t → ∞, and
vice versa for the negative spike).

Any difference between the t, N → ∞ limits of C
[N]
fs (t)

and C
[N]
fs (t) can therefore be explained in terms of which off-

diagonal spikes are enclosed by h(p1) and h[f (p)]. These
functions will enclose different sets of spikes. For example,
for a symmetric barrier, with N = 3, the function h(p0) en-
closes the off-diagonal spikes (− 1, 1, 1), (1, −1, 1), and (1,
1, −1), whereas h(p1) encloses (1, −1, 1), (1, 1, −1), and (1,
−1, −1).

We have therefore obtained the result that the t, N
→ ∞ limit of C

[N]
fs (t) is identical to that of C

[N]
fs (t) (and thus

gives the exact quantum rate) if the contribution from each
off-diagonal spike to AN(p) is individually zero. We make use
of this important result in Sec. V.

V. EFFECTS OF RECROSSING

The results just obtained show that quantum TST will
give the exact quantum rate if two conditions are satisfied.
First, there must be no recrossing of the cyclically invariant
dividing surface f(q) (by which we mean simply that C

[N]
fs (t)

is time-independent). Second, each of the off-diagonal spikes
[in the first term of Eq. (19)] must contribute zero to C

[N]
fs (t)

in the long-time limit. We now show that this last condition
is satisfied if there is no recrossing of any dividing surface
orthogonal to f(q) in ring-polymer space.

A. Orthogonal dividing surfaces

A dividing surface g(q) orthogonal to f(q) satisfies

N∑
i=1

∂g(q)

∂qi

∂f (q)

∂qi

= 0. (24)

When f (q) = q0, the surface g(q) can be any function of any
linear combination of polymer beads orthogonal to q0. For a
more general (cyclically permutable) f(q), g(q) will also take
this form close to the centroid axis (where, by definition, all
degrees of freedom orthogonal to the centroid vanish), and
will assume a more general curvilinear form away from this
axis.
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By no recrossing of g(q), we mean that the time-
correlation function

M
[N]
fs (t) =

∫
dq

∫
dz

∫
d�F̂[f (q)]h[g(z)]

×
N∏

i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× 〈qi + �i/2|eiĤ t/¯|zi〉〈zi |e−iĤ t/¯|qi − �i/2〉
(25)

is time-independent. We know from Paper I1 that the t → 0+
limit of M

[N]
fs (t) is zero, since the flux and side dividing sur-

faces are different. Hence no recrossing of g(q) implies that
M

[N]
fs (t) is zero for all time t, indicating that there is no net

passage of flux from the initial distribution on f(q) through
the surface g(q). Taking the t → ∞ limit (using the same ap-
proach as in Sec. III), we obtain

lim
t→∞ M

[N]
fs (t) =

∫
dpAN (p)h[g(p)]

= 0 if no recrossing of g(q), (26)

where AN(p) is defined in Eq. (13), and g(p) is defined analo-
gously to f (p), i.e.,

lim
t→∞ h[g(pt/m)] = h[g(p)]. (27)

In the N → ∞ limit, the contribution of rN(p) to M
[N]
fs (t) can-

cels out (for the same reason that it cancels out in C
[N]
fs (t)—

see Sec. IV B). Equation (26) is thus equivalent to stating that
the total contribution to AN(p) from the spikes enclosed by
h[g(p)] is zero if there is no recrossing of g(q).

B. Effect of no recrossing orthogonal to f(q)

If there is no recrossing of any g(q) orthogonal to f(q),
we can use Eq. (26) to generate a set of equations giving con-
straints on the spikes. Let us see what effect these constraints
have in the simple case that N = 3 and f (q) = q0.56 We can
construct dividing surfaces g(q) orthogonal to f(q) by taking
any function of the normal mode coordinates

Qx = 1√
6

(2q1 − q2 − q3) ,

(28)

Qy = 1√
2

(q2 − q3) .

Let us take

gr (q) =
√

Q2
x + Q2

y − r‡,

(29)
gF (q) = F [φ(Qx,Qy)],

where r‡ > 0 specifies the position of surface gr(q), and F can
be chosen to be any smooth function57 of the angle

φ(Qx,Qy) = arctan(Qy/Qx). (30)

Clearly gr(q) and φ are polar coordinates in the plane orthog-
onal to the centroid axis. If there is no recrossing of gr(q) or

gF(q), then Eq. (26) will hold with

gr (p) = lim
ε→0

√
P 2

x + P 2
y − ε,

(31)
gF (p) = F [φ(Px, Py)],

in place of g(p) [where (Px, Py) are the combinations of pi

analogous to (Qx, Qy)]. Now, gr (p) is a thin cylinder enclosing
the centroid axis, and hence this function gives the constraint
that the contributions to AN(p) from the two spikes lying along
this axis (in positive and negative directions) cancel out.58 We
are then free to choose F so that h[gF (p)] encloses each off-
diagonal spike in turn, since no two off-diagonal spikes pass
through the same angle φ (see Fig. 4). We do not need to
worry about the spikes along the centroid axis (which appear
as a point at the origin—see Fig. 4), since we have just shown
that they cancel out. Equation (26) then gives a set of con-
straints, each of which specifies that the contribution to AN(p)
from one of the spikes is individually zero [if there is no re-
crossing orthogonal to f(q)].

In Appendix D, we show that this result generalizes to
any N and to any choice of the cyclically invariant dividing
surface f(q). The t, N → ∞ limit of C

[N]
fs (t) is therefore equal

to the t → ∞ limit of C
[N]
fs (t) if there is no recrossing orthog-

onal to f(q). Since the t → 0+ limit of C
[N]
fs (t) is by definition

equal to its t → ∞ limit if there is also no recrossing of f(q),
we have therefore derived the main result of this article: quan-
tum TST (i.e., RPMD-TST) gives the exact quantum rate for a
one-dimensional system if there is no recrossing of f(q), nor
of any surface orthogonal to it in ring-polymer space. We will
show in Sec. VI that this result generalises straightforwardly
to multi-dimensions.

C. Interpretation

Quantum TST therefore differs from classical TST in re-
quiring an extra condition to be satisfied if it is to give the
exact rate: in addition to no recrossing of the dividing-surface
f(q), there should also be no recrossing (by the exact quan-
tum dynamics) of surfaces in the (N − 1)-dimensional space
orthogonal to f(q). In the limit t → 0+, this space describes
fluctuations in the positions of the ring-polymer beads. The
extra condition is therefore satisfied automatically in the clas-
sical (i.e., high temperature) limit, where it is impossible to
recross any surface orthogonal to f(q), since the initial distri-
bution of polymer beads is localised at a point and only the
projection of the momentum along the centroid axis is non-
zero. For similar reasons, it is also impossible to recross any
surface orthogonal to f (q) = q0 − q‡ for a parabolic barrier
at any temperature (at which the parabolic-barrier rate is de-
fined). As a result, quantum TST gives the exact rate in the
classical limit and for a parabolic barrier, provided there is no
recrossing of f(q) (which condition is satisfied for a parabolic
barrier when q‡ is located at the top of the barrier).

In a real system, there will always be some recross-
ing of surfaces orthogonal to f(q) on account of the anhar-
monicity. However, the amount of such recrossing is zero
in the high temperature limit (see above), and will only
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become significant at temperatures sufficiently low that the
t → 0+ distribution of polymer beads is delocalised be-
yond the parabolic tip of the potential barrier. In practice,
this means that quantum TST (i.e., RPMD-TST) will give a
good approximation to the exact quantum rate at temperatures
above the cross-over to deep-tunnelling (provided the reaction
is not dominated by dynamical recrossing or real-time coher-
ence effects). On reducing the temperature below cross-over,
the amount of recrossing orthogonal to f(q) will increase, with
the result that quantum TST will become progressively less
accurate. Previous work on RPMD6–8, 10, 11, 13 and related in-
stanton methods6, 35–42 has shown that this deterioration in ac-
curacy is gradual, with the RPMD-TST rate typically giving a
good approximation to the exact quantum rate at temperatures
down to half the cross-over temperature and below.

D. Correction terms

An alternative way of formulating the above is to regard
the M

[N]
fs (t) as a set of correction terms, which can be added to

C
[N]
fs (t) in order to recover the exact quantum rate in the limits

t → ∞. The orthogonal surfaces g(q) should be chosen such
that the resulting sum of terms contains the same set of spikes

in the t → ∞ limit as does C
[N]
fs (t). For example, if N = 3

and f (q) = q0, we can define two time-correlation functions
M1(t) and M2(t) which use dividing surfaces of the form of
gF(q), with F chosen to enclose, respectively, the spikes (1, 1,
−1) and (1, −1, −1). The corrected flux-side time-correlation
function

C[N=3]
corr (t) = C

[N=3]
fs (t) − M1(t) + M2(t) (32)

then contains the same spikes in the t → ∞ limit as C
[N]
fs (t).

Since M1(t) and M2(t) are zero in the limit t → 0+, it fol-
lows that C[N=3]

corr (t) interpolates between the RPMD-TST rate
in the limit t → 0+, and the exact quantum rate in the limit
t → ∞.56 Clearly M1(t) and M2(t) will be zero for all val-
ues of t if there is no recrossing of surfaces orthogonal to f(q)
in ring-polymer space. This treatment generalizes in an obvi-
ous way to N > 3. An alternative way of stating the result of
Sec. V B is thus that C

[N]
fs (t) gives the exact rate in the

t → ∞ limit when added to correction terms which are zero
in the absence of recrossing.

VI. APPLICATION TO MULTI-DIMENSIONAL SYSTEMS

Here we outline the modifications needed to extend
Secs. III–V to multi-dimensional systems. As in Secs. III–V,
we make use of quantum scattering theory, but we empha-
sise that the results obtained here apply also in the condensed
phase, provided there is the usual separation in timescales be-
tween barrier-crossing and equilibration.46

Following Paper I,1 we represent the space of an F-
dimensional reactive scattering system using Cartesian coor-
dinates qj, j = 1. . . F, and define ring-polymer coordinates
q ≡ {q1, . . . , qN}, where qi ≡ {qi, 1, . . . , qi, F} is the ge-
ometry of the ith replica of the system. Analogous general-
izations can be made of z, p, �, and so on. We then con-
struct a multi-dimensional version of C

[N]
fs (t) by making the

replacements

|qi + �i/2〉 → |qi,1 + �i,1/2, . . . , qi,F + �i,F /2〉 (33)

in Eq. (1), and integrating over the multi-dimensional coor-
dinates (q, z, �). The dividing surface f(q) is now invariant
under collective cyclic permutations of the coordinates q, and
is thus a permutationally invariant function of the replicas
σ ≡ {σ1(q1), . . . , σN (qN )} of a (classical) reaction coordinate
σ (q1, . . . , qF).

It is straightforward to analyze the t → ∞ behaviour
of C

[N]
fs (t) by combining the analysis of Secs. III–V with

centre-of-mass-frame scattering theory. All we need to note is
that the relative motion of the reactant or product molecules
can be described by a one-dimensional scattering coordinate,
with all other degrees of freedom being described by chan-
nel functions51 (which include the rovibrational states of the
scattered molecules, and also specify whether the system is
in the reactant or product arrangement). We will denote the
momentum of the ith replica along the scattering coordinate
as π i, using the convention that π i is negative in the reactant
arrangement and positive in the product arrangement. Since
all other internal degrees of freedom are bound, it follows
that

lim
t→∞ h[σi(pi t/m)] = h(πi). (34)

This last result allows us to construct a multi-dimensional
generalisation of the hybrid function C

[N]
fs (t) by replacing

h[f(q)] in C
[N]
fs (t) by h[σ i(qi)]. One can show (by general-

izing Appendix A) that the multi-dimensional C
[N]
fs (t) gives

the exact quantum rate in the limit t → ∞. We then take the

t → ∞ limits of C
[N]
fs (t) and C

[N]
fs (t) by using the scattering

relation

�̂−|πi〉|vi〉 = |φ−
πi ,vi

〉, (35)

where �̂− is the (multi-dimensional) Møller operator,51

| π i 〉 is a momentum eigenstate, |vi〉 is a reactant or product
channel function, and |φ−

πi ,vi
〉 is a scattering eigenstate satisfy-

ing outgoing boundary conditions. As in one-dimension, we
obtain integrals over an N-dimensional hypercube:

lim
t→∞ C

[N]
fs (t) =

∫
dπAN (π )h(πi), (36)

lim
t→∞ C

[N]
fs (t) =

∫
dπAN (π)h[f (π)], (37)

where π ≡ {π1, . . . , πN }, and AN (π) is a generalisation of
AN(p), obtained by making the replacements of Eq. (33) in
Eq. (13), replacing |φ−

pi
〉 by |φ−

πi ,vi
〉, and summing over vi . The

function f (π) is a multi-dimensional generalisation of f (p),
and satisfies

lim
t→∞ h[f (pt/m)] = h[f (π)] (38)

(which is equivalent to stating that f(q) separates cleanly the
reactants from the products in the limit t → ∞).

The derivation of Appendix B generalizes straightfor-
wardly to multi-dimensions, with the result that AN (π) has
the analogous structure to AN(p) in Eq. (19). Following
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Sec. IV and Appendix C, one can show that only the δ-
function spikes [corresponding to the first term in Eq. (19)]

contribute to C
[N]
fs (t) and C

[N]
fs (t) in the limits t, N → ∞.

There are many more of these spikes in multi-dimensions than
in one-dimension, since there is a spike for every possible pair
of (open) reactant or product channels. However, it is possi-
ble to isolate each off-diagonal spike by constructing angular
functions F (see Sec. V and Appendix D) in the space orthog-
onal to f (π ). It then follows that each off-diagonal spike in
AN (π ) contributes zero to C

[N]
fs (t) in the limits t, N → ∞,

if there is no recrossing of surfaces orthogonal to f(q) in the
space σ .

Hence we have obtained the same result in multi-
dimensions as in one-dimension: that the RPMD-TST rate is
equal to the exact quantum rate if there is no recrossing of
the dividing surface, nor of any surface orthogonal to it in an
(N − 1)-dimensional space orthogonal to f(q), which de-
scribes (in the t → 0+ limit) the fluctuations in the polymer-
bead positions along the reaction coordinate σ (q1, . . . , qF). It
is impossible to recross these orthogonal surfaces in the clas-
sical (i.e., high-temperature limit), where RPMD-TST thus re-
duces to classical TST.

VII. CONCLUSIONS

We have shown that quantum TST (i.e., RPMD-TST) is
related to the exact quantum rate in the same way that classi-
cal TST is related to the exact classical rate; i.e., quantum TST
is exact in the absence of recrossing. Recrossing in quantum
TST is more complex than in classical TST, since, in addi-
tion to recrossing of the ring-polymer dividing surface, one
must also consider recrossing through surfaces that describe
fluctuations in the positions of the polymer beads along the
reaction coordinate. Such additional recrossing disappears in
the classical and parabolic barrier limits, and thus becomes
important only at temperatures below the cross-over to deep
tunnelling. Previous RPMD-TST calculations6 indicate that
the resulting loss in accuracy increases slowly as the temper-
ature is reduced below cross-over, such that quantum TST re-
mains within a factor of two of the exact rate at temperatures
down to below half the cross-over temperature. However, it
is clear that further work will be needed in order to predict
quantitatively how far one can decrease the temperature be-
low cross-over before quantum TST breaks down (which will
always happen at a sufficiently low temperature).

Just as with classical TST, quantum TST will not work
for indirect reactions, such as those involving long-lived inter-
mediates, or diffusive dynamics (e.g., the high-friction regime
of the quantum Kramers problem61). However, this leaves a
vast range of chemical reactions for which quantum TST is
applicable, and for which it will give an excellent approxima-
tion to the exact quantum rate. The findings in Paper I1 and in
this article thus validate the already extensive (and growing)
body of results from RPMD rate-simulations7–19 (which give
a lower bound to the RPMD-TST rate), as well as results ob-
tained using the older centroid-TST method20–25 (which is a
special case of RPMD-TST6, 26).
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APPENDIX A: LONG-TIME LIMIT OF THE HYBRID
FLUX-SIDE TIME-CORRELATION FUNCTION

Here we derive Eq. (8), which states that C
[N]
fs (t) gives the

exact quantum rate in the t → ∞ limit. We use the property
that

C
[N]
fs (t) = C

[N]
sf (t) = − d

dt
C

[N]
ss (t), (A1)

where C
[N]
sf (t) and C

[N]
ss (t) are the side-flux and side-side time-

correlation functions corresponding to C
[N]
fs (t). We then write

C
[N]
sf (t) as

C
[N]
sf (t) =

∫
dq

∫ ∞

−∞
d�1h[f (q)]

× 〈q1 − �1/2|e−βN Ĥ |q2〉

×
[

N∏
i=3

〈qi−1|e−βN Ĥ |qi〉
]

× 〈qN |e−βN Ĥ |q1 + �1/2〉
× 〈q1 + �1/2|eiĤ t/¯F̂ (q‡)e−iĤ t/¯|q1 − �1/2〉,

(A2)

where F̂ (q‡) is the flux operator3

F̂ (q‡) = 1

2m
[p̂δ(q − q‡) + δ(q − q‡)p̂], (A3)

and insert identities of the form eiĤ t/¯e−iĤ t/¯ to obtain

C
[N]
sf (t) =

∫
dq

∫ ∞

−∞
d�1h[f (q)]

× 〈q1 − �1/2|eiĤ t/¯e−βN Ĥ e−iĤ t/¯|q2〉

×
[

N∏
i=3

〈qi−1|eiĤ t/¯e−βN Ĥ e−iĤ t/¯|qi〉
]

× 〈qN |eiĤ t/¯e−βN Ĥ e−iĤ t/¯|q1 + �1/2〉
× 〈q1 + �1/2|eiĤ t/¯F̂ (q‡)e−iĤ t/¯|q1 − �1/2〉.

(A4)

This allows us to take the t → ∞ limit of C
[N]
sf (t) by using

Eq. (9) together with the relation

�̂+|pi〉 = |φ+
pi

〉, (A5)

where

�̂+ ≡ lim
t→∞ e−iĤ t/¯eiK̂t/¯, (A6)
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and |φ+
pi

〉 is a (reactive) scattering wave function with incom-
ing boundary conditions.51 We then obtain

C
[N]
sf (t) =

∫
dp

∫ ∞

−∞
dp′

1h

[
f

(
p1 + p′

1

2
, p2, . . . , pN

)]
× 〈φ+

p′
1
|e−βN Ĥ |φ+

p2
〉

×
[

N∏
i=3

〈φ+
pi−1

|e−βN Ĥ |φ+
pi

〉
]

× 〈φ+
pN

|e−βN Ĥ |φ+
p1

〉〈φ+
p1

|F̂ (q‡)|φ+
p′

1
〉. (A7)

From the orthogonality of the scattering eigenstates,51 we
obtain

〈φ+
p |e−βN Ĥ |φ+

p′ 〉 = e−p2βN/2mδ(p − p′). (A8)

We also know that

h[f (p, p, . . . , p)] = h(p) (A9)

(since otherwise f(q) would not correctly distinguish between
reactants and products in the limit t → ∞). We thus obtain

lim
t→∞ C

[N]
sf (t) =

∫ ∞

−∞
dpe−p2β/2mh(p)〈φ+

p |F̂ (q‡)|φ+
p〉, (A10)

which is the t → ∞ limit of the Miller-Schwarz-Tromp flux-
side time-correlation function,3 from which we obtain Eq. (8).

APPENDIX B: DERIVATION OF THE STRUCTURE
OF AN(p)

Here we derive Eq. (19) of Sec. IV. We first define a spe-
cial type of side-side time-correlation function,

P
[N]
l (E, t) =

∫
dq

∫
dz

∫
d�h[f (q)]

⎡⎣ N∏
i=1,i �=l

h(zi − q‡)

⎤⎦
×

N∏
i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× 〈qi + �i/2|eiĤ t/¯δ(Ĥ − Ei)|zi〉
× 〈zi |e−iĤ t/¯|qi − �i/2〉, (B1)

where E ≡ {E1, E2, . . . , EN}, and then consider its t → ∞
time-derivative,

Q
[N]
l (E) = lim

t→∞
d

dt
P

[N]
l (E, t). (B2)

We can obtain two equivalent expressions for Q
[N]
l (E),

by evaluating it as either a flux-side or a side-flux time-

correlation function. The flux-side version is

Q
[N]
l (E) =

∫
dq

∫
dp

∫
d�F̂[f (q)]

⎡⎣ N∏
i=1,i �=l

h(pi)

⎤⎦
×

N∏
i=1

〈qi−1 − �i−1/2|e−βN Ĥ |qi + �i/2〉

× 〈qi + �i/2|δ(Ĥ − Ei)|φ−
pi

〉
× 〈φ−

pi
|qi − �i/2〉, (B3)

which gives

|pl|−1AN (p1, . . . , pl, . . . , pN )

+ |p̃l|−1AN (p1, . . . , p̃l, . . . , pN )

= Q
[N]
l (E)

mN

N∏
i=1,i �=l

|pi | if p̃l real, (B4)

and

|pl|−1AN (p1, . . . , pl, . . . , pN )

= Q
[N]
l (E)

mN

N∏
i=1,i �=l

|pi | if p̃l imaginary. (B5)

The side-flux version is

Q
[N]
l (E) =

∫
ds

∫
ds′h[f (s + s′)]

×
[

N∏
i=1

〈φ+
s ′
i−1

|e−βN Ĥ |φ+
si
〉
]

× 〈φ+
sl
|δ(Ĥ − El)|φ+

s ′
l
〉

×
N∑

j=1,j �=l

〈φ+
sj
|δ(Ĥ − Ej )F̂ (q‡)|φ+

s ′
j
〉

×
N∏

i=1,i �=l

i �=j

〈φ+
si
|δ(Ĥ − Ei)ĥ(q‡)|φ+

s ′
i
〉.

(B6)

The second to fourth lines in this expression contain the δ-
functions,

δ(sl − s ′
l )

N∏
i=1

δ(s ′
i−1 − si)δ[E+(si) − Ei], (B7)

where E+(si) is defined the other way round to E−(pi) of
Eq. (14), and where the δ-functions in si and s ′

i result from
the orthogonality of the scattering states |φ+

s 〉.51 Integrating
over si and s ′

i , we obtain

Q
[N]
l (E) = bN (p)δ(El+1 − El), (B8)

where bN(p) is some function of p (which we do not need to
know explicitly). Substituting this expression into Eqs. (B4)
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and (B5), we obtain

|pl|−1AN (p1, . . . , pl, . . . , pN )

+ |p̃l|−1AN (p1, . . . , p̃l, . . . , pN )

= cN (p)δ(El+1 − El) if p̃l real, (B9)

and

|pl|−1AN (p1, . . . , pl, . . . , pN )

= cN (p)δ(El+1 − El) if p̃l imaginary, (B10)

where cN(p) is some function of p. This derivation was ob-
tained for the case that pi > 0, i �= l, but can clearly be re-
peated for all combinations of positive and negative pi [by re-
placing various h(zi − q‡) by h(− zi + q‡)]. Hence Eqs. (B9)
and (B10) hold for all p.

Now, we can obtain alternative expressions for the right-
hand side of Eqs. (B9) and (B10) by adding and subtract-
ing sequences of terms that correspond to following different
paths through the hypercube. Consider, for example (for the
case that p̃i , p̃j are both real), the sequence

|pj |−1AN (p1, . . . , pi, . . . , pj , . . . , pN )

+ |p̃j |−1AN (p1, . . . , pi, . . . , p̃j , . . . , pN )

= XN (p)δ(Ej+1 − Ej ),

|pi |−1AN (p1, . . . , pi, . . . , p̃j , . . . , pN )

+ |p̃i |−1AN (p1, . . . , p̃i , . . . , p̃j , . . . , pN )

= YN (p)δ(Ei+1 − Ei), (B11)

|p̃j |−1AN (p1, . . . , p̃i , . . . , p̃j , . . . , pN )

+ |pj |−1AN (p1, . . . , p̃i , . . . , pj , . . . , pN )

= ZN (p)δ(Ej+1 − Ej ),

where each of XN(p), YN(p), ZN(p) is some (different) function
of p. Combining these expressions, we obtain

|pi |−1AN (p1, . . . , pi, . . . , pN )

+ |p̃i |−1AN (p1, . . . , p̃i , . . . , pN )

= PN (p)δ(Ei+1 − Ei) + QN (p)δ(Ej+1 − Ej ), (B12)

where PN (p) = −|pj ||p̃j |−1YN (p), and QN (p) =
|pj |[|pi |−1XN (p) + |p̃i |−1ZN (p)].59 We can repeat this
procedure for each of the N − 1 different values of
j �= i. Because the resulting set of coefficients PN and QN are
linearly independent,62 it follows that

|pi |−1AN (p1, . . . , pi, . . . , pN )

+ |p̃i |−1AN (p1, . . . , p̃i , . . . , pN )

= dN (p)
N−1∏
i=1

δ(Ei+1 − Ei) if p̃i real, (B13)

and

|pi |−1AN (p1, . . . , pi, . . . , pN )

= dN (p)
N−1∏
i=1

δ(Ei+1 − Ei) if p̃i imaginary, (B14)

where dN(p) is some function of p. From this, we obtain
Eq. (19) of Sec. IV.

APPENDIX C: CANCELLATION OF THE TERM rN(p)
IN THE LIMIT N → ∞

Because the function f (p) must vary smoothly with
imaginary time and converge in the limit N → ∞, it can be
rewritten as a function of a finite number K of the linear com-
binations

P i =
N∑

j=1

Tijpj , i = 1, . . . , K, (C1)

in which Tij ∼ N−1 (i.e., P i is normalised such that it con-
verges in the limit N → ∞; e.g., T0j = N−1 corresponds to the
centroid). It then follows that ∂f(p)/∂pj ∼ N−1, and hence that

lim
N→∞

f (p1, . . . , p̃j , . . . , pN ) = f (p) + (p̃j − pj )
∂f (p)

∂pj

,

(C2)

provided the range of p̃j − pj is finite [which it is because
rN(p) contains Boltzmann factors]. We can therefore write the
N → ∞ limit of Eq. (23) as

lim
N→∞

S(N ) =
∫ ∞

−∞
dp1 . . .

∫ ∞

−∞
dpj−1

∫ ∞

0
dpj . . .

∫ ∞

0
dpNrN (p)

× (p̃j − pj )
∂f (p)

∂pj

δ[f (p1, . . . , pj , . . . , pN )],

(C3)

which shows that the volume sandwiched between
the two heaviside functions becomes a strip of width
(p̃j − pj )∂f (p)/∂pj ∼ N−1 in the limit N → ∞.

APPENDIX D: ISOLATING THE OFF-DIAGONAL
SPIKES FOR N > 3

It is straightforward to generalize the result obtained for
N = 3 and f (q) = q0 in Sec. V B to general N and to any
(cyclically invariant) choice of f(q).

We consider first the special case of a centroid dividing
surface [f (q) = q0]. The space orthogonal to q0 can be rep-
resented by orthogonal linear combinations Qi, i = 1, . . . , N
− 1 of qi, analogous to Qx and Qy in Sec. V B. We can then
define a generalized radial dividing surface

gr (q) =
√√√√N−1∑

i=1

Q2
i − r‡ (D1)

(which is invariant under cyclic permutation of the qi) and
generalized angular dividing surfaces

gF (q) = F [φ(QX,QY )] (D2)
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with

φ(QX,QY ) = arctan(QY /QX), (D3)

where (QX, QY) can be chosen to be any mutually orthogo-
nal pair of linear combinations of the Qi. From Eq. (27), the
t → ∞ limits of gr(q) and gF(q) are

gr (p) = lim
ε→0

√√√√N−1∑
i=1

P 2
i − ε (D4)

and

gF (p) = F [φ(PX, PY )] , (D5)

where Pi and (PX, PY) are the linear combinations of pi anal-
ogous to Qi and (QX, QY). We can then proceed as for the N
= 3 example in Sec. V B. Substituting gr (p) into Eq. (26), we
obtain the constraint that the spikes along the centroid axis
contribute zero (since gr (p) encloses these spikes only). This
leaves us free to construct angular dividing surfaces gF(q)
in various planes (QX, QY) (which need not be mutually or-
thogonal) in order to enclose individual off-diagonal spikes.60

Equation (26) then gives a set of constraints, each stating that
the contribution to AN(p) from one of these spikes is zero if
there is no recrossing of any surface orthogonal to f(q).

This reasoning can be applied with slight modification to
a general (cyclically invariant) dividing surface f(q). By con-
struction, such a surface reduces to a function of just the cen-
troid near the centroid axis, and hence there exists a radial
coordinate in the (N − 1)-dimensional curvilinear space or-
thogonal to f(q) which reduces to gr(q) close to the centroid
axis. We therefore obtain the constraint that the spikes along
the centroid axis contribute zero, and are then free to isolate
each of the off-diagonal spikes by using curvilinear generali-
sations of the angles φ, which sweep over curvilinear surfaces
that are orthogonal to f(q), and which reduce to the form of
Eq. (D3) close to the centroid axis.
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